Robust estimation of the variogram: I

  • Noel Cressie
  • Douglas M. Hawkins


It is a matter of common experience that ore values often do not follow the normal (or lognormal) distributions assumed for them, but, instead, follow some other heavier-tailed distribution. In this paper we discuss the robust estimation of the variogram when the distribution is normal-like in the central region but heavier than normal in the tails. It is shown that the use of a fourth-root transformation with or without the use of M-estimation yields stable robust estimates of the variogram.

Key words

Geostatistics kriging robust estimation variogram 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cressie, N., 1980, Relaxing assumptions in the one samplet-test: Australian J. Stat., v. 22, to appear.Google Scholar
  2. David, M., 1977, Geostatistical ore reserve estimation: Elsevier, Amsterdam, 364 p.Google Scholar
  3. David, M., 1978, Sampling and estimation problems for three-dimensional spatial stationary and non-stationary stochastic processes as encountered in the mineral industry: J. Stat. Planning Inference, v. 2, p. 211–244.Google Scholar
  4. Davis, B. M., 1978, Some tests of hypothesis concerning variograms. Ph.D. Thesis, University of Wyoming, Laramie, p. 147.Google Scholar
  5. Gastwirth, J. and Rubin, M., 1969, On robust linear estimators: Ann. Math. Stat., v. 40, p. 24–39.Google Scholar
  6. Gross, A., 1977, Confidence intervals for bisquare regression estimates: J. Amer. Stat. Assoc., v. 72, p. 341–354.Google Scholar
  7. Hogg, R. V., 1974, Adaptive robust procedures: A partial review and some suggestions for future applications and theory: J. Amer. Stat. Assoc., v. 69, p. 909–923.Google Scholar
  8. Huber, P. J., 1964, Robust estimation of a location parameter. Ann. Math. Stat., v. 35, p. 73–101.Google Scholar
  9. Huber, P. J., 1972, Robust statistics—review: Ann. Math. Stat., v. 43, p. 1041–1067.Google Scholar
  10. Huber, P. J., 1978, Robust statistical procedures: SIAM, Philadelphia.Google Scholar
  11. Jaeckel, L., 1971, Robust estimates of location: Symmetry and asymmetric contamination. Ann. Math. Stat., v. 42, p. 1020–1034.Google Scholar
  12. Matheron, G., 1963, Principles of geostatistics: Econ. Geol., v. 58, p. 1246–1266.Google Scholar
  13. Meditch, J. S., 1969, Stochastic optimal linear estimation and control: McGraw-Hill, San Francisco, 269 p.Google Scholar
  14. Shorack, G., 1976, Robust studentization of location estimates: Statistica Neerlandica, v. 30, p. 119–141.Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Noel Cressie
    • 1
  • Douglas M. Hawkins
    • 2
  1. 1.School of Mathematical SciencesThe Flinders University of South AustraliaAustralia
  2. 2.National Research Institute for Mathematical SciencesCSIRPretoriaSouth Africa

Personalised recommendations