Advertisement

Theoretical and Mathematical Physics

, Volume 62, Issue 1, pp 1–20 | Cite as

Local and nonlocal currents for nonlinear equations

  • V. S. Vladimirov
  • I. V. Volovich
Article

Keywords

Nonlinear Equation Nonlocal Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. S. Vladimirov, The Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).Google Scholar
  2. 2.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York (1974).Google Scholar
  3. 3.
    L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  4. 4.
    N. Kh. Ibragimov, Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  5. 5.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons. The Inverse Scattering Method [in Russian], Nauka, Moscow (1980).Google Scholar
  6. 6.
    M. Kruskal, Lect. Notes in Physics,38, 310 (1975).Google Scholar
  7. 7.
    C. S. Gardner, J. M. Green, M. D. Kruskal, M. M. Miura, Phys. Rev. Lett.,15, 1095 (1967).Google Scholar
  8. 8.
    N. N. Bogolyubov, “Model Hamiltonian in the theory of superconductivity,” Selected Works, Vol. 3 [in Russian], Naukova Dumka, Kiev (1971), pp. 110–173.Google Scholar
  9. 9.
    M. Luscher and K. Pohlmeyer, Nucl. Phys. B,137, 46 (1978).Google Scholar
  10. 10.
    M. Luscher, Nucl. Phys. B,135, 1 (1978).Google Scholar
  11. 11.
    E. Brezin, C. Itzykson, J. Zinn-Justin, and J.-B. Zuber, Phys. Lett. B,82, 442 (1979).Google Scholar
  12. 12.
    V. S. Vladimirov and V. V. Zharinov, Diff. Equations,16, 845 (1980).Google Scholar
  13. 13.
    L. D. Faddeev, “Integrable models in 1+1 dimensional quantum field theory,” Preprint S. Ph. T./82/79, CEN-SACLAY, France (1982).Google Scholar
  14. 14.
    V. S. Vladimirov and I. V. Volovich, Dokl. Akad. Nauk SSSR,279, 843 (1984);280, No. 2 (1985).Google Scholar
  15. 15.
    V. S. Vladimirov and I. V. Volovich, Teor. Mat. Fiz.,59, 3 (1984);60, 169 (1984).Google Scholar
  16. 16.
    N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, 3rd ed., Wiley, New York (1980).Google Scholar
  17. 17.
    A. Chodos, Phys. Rev. D,20, 915 (1979).Google Scholar
  18. 18.
    M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York (1975).Google Scholar
  19. 19.
    M. Lakshmanan, Th. W. Ruijgrok, and C. J. Thompson, Physica (Utrecht),A84, 577 (1976)Google Scholar
  20. 20.
    S. P. Novikov, Funktsional. Analiz i Ego Prilozhen.,8, 54 (1974).Google Scholar
  21. 21.
    V. E. Zakharov and A. B. Shabat, Funktsional. Analiz i Ego Prilozhen.,13, 13 (1979).Google Scholar
  22. 22.
    K. Pohlmeyer, Commun. Math. Phys.,46, 207 (1976).Google Scholar
  23. 23.
    V. E. Zakharov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz.,74, 1953 (1978).Google Scholar
  24. 24.
    L. Dolan, “Kac-Moody algebras and exact solvability in hadron physics,” Preprint RU 83/B/63, The Rockefeller University, New York (1983).Google Scholar
  25. 25.
    L. A. Takhtajan, Phys. Lett. A,64, 235 (1977).Google Scholar
  26. 26.
    H. Eichenherr, “Infinite dimensional symmetry algebras in integrable systems,” Preprint PAR-LPTHE 82/16, Paris (1982).Google Scholar
  27. 27.
    W. R. Wasow, Asymptotic Expansions for Ordinary Differential Equations, New York (1965).Google Scholar
  28. 28.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], MGU, Moscow (1965).Google Scholar
  29. 29.
    M. Grimm, M. Sohnius, and J. Wess, Nucl. Phys. B,133, 275 (1978).Google Scholar
  30. 30.
    I. V. Volovich, Teor. Mat. Fiz.57, 469 (1983).Google Scholar
  31. 31.
    C. Devchand, Nucl. Phys. B,238, 331 (1984).Google Scholar
  32. 32.
    I. Ya. Aref'eva and I. V. Volovich, Zap. Nauchn. Semin. LOMI,133, 6 (1984).Google Scholar
  33. 33.
    I. V. Volovich, “Quasiclassical expansion in constructive quantum field theory,” Author's Abstract of Candidate's Dissertation [in Russian], V. A. Steklov Mathematics Institute, USSR Academy of Sciences (1979).Google Scholar
  34. 34.
    P. P. Kulish, Teor. Mat. Fiz.,26, 198 (1976).Google Scholar
  35. 35.
    R. K. Dodd and R. K. Bullough, Proc. R. Soc. London Ser. A,352, 481 (1977).Google Scholar
  36. 36.
    A. V. Zhiber and A. B. Shabat, Dokl. Akad. Nauk SSSR,247, 1103 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. S. Vladimirov
  • I. V. Volovich

There are no affiliations available

Personalised recommendations