Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape

  • G. P. Lohmann


A general morphometric procedure is described that organizes collections of microfossil outlines according to their shape. It involves representing the greatest proportion of variation observed among a collection of shapes by the least number of different shapes. Since these are determined as empirical orthogonal shape functions—eigenfunctions—of the observed shapes, the procedure is termed eigenshape analysis. Observed shapes are arranged and their shape differences systemized by reference to these determined eigenshape functions. The well-known ecophenotypic shape variation with latitude exhibited by the Pleistocene planktonic foraminifer Globorotalia truncatulinoides (d'Orbigny)serves as an example.

Key words

shape analysis eigenfunction analysis Fourier shape analysis eigenshape analysis Globorotalia truncatulinoides biometrics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anstey, R. L. and Delmet, D. A., 1972, Genetic meaning of zooecial chamber shapes in fossil bryozoans: Fourier analysis: Science, v. 177, p. 1000–1002.Google Scholar
  2. Anstey, R. L. and Pachut, J. F., 1980, Fourier packing ordinate: a univariate size-independent measurement of polygonal packing variation in Paleozoic bryozoans: Jour. Math. Geol., v. 12, p. 139–156.Google Scholar
  3. Aubrey, D. G., Inman, D. L., and Winant, C. D., 1980, The statistical prediction of beach changes in Southern California: Jour. Geophys. Res., v. 85, p. 3264–3276.Google Scholar
  4. Benson, R. H., 1967, Muscle scar patterns of Pleistocene (Kansan) ostracodes,in Curt Teichert and E. L. Yochelson, (Eds.), Essays in paleontology and stratigraphy: Kansas University Press, Lawrence, Kansas, p. 211–241.Google Scholar
  5. Blackith, R. E. and Reyment, R. A., 1971, Multivariate morphometrics: Academic Press, London, 412 p.Google Scholar
  6. Bookstein, F. L., 1978, The measurement of biological shape and shape change: Springer-Verlag, Berlin, 191 p.Google Scholar
  7. Bookstein, F. L., Strauss, R. E., Humphries, J. M., Chernoff, B. C., Elder, R. L., and Smith, G. R., 1982, A comment upon the uses of Fourier methods in systematics: Systematic Zool., v. 31, p. 85–92.Google Scholar
  8. Canfield, D. J. and Anstey, R. L., 1981, Harmonic analysis of cephalopod suture patterns: Jour. Math. Geol., v. 13, p. 23–35.Google Scholar
  9. Christopher, R. A. and Waters, J. A., 1974, Fourier analysis as a quantitative descriptor of miosphere shape: Jour. Paleo., v. 48, p. 697–709.Google Scholar
  10. Cooley, W. S. and Lohnes, P. R., 1971, Multivariate data analysis: Wiley & Sons, New York, 364 p.Google Scholar
  11. Davis, R. E., 1976, Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean: Jour. Phys. Oceanog., v. 6, p. 249–266.Google Scholar
  12. Delmet, D. A. and Anstey, R. L., 1974, Fourier analysis of morphological plasticity within an Ordovician bryozoan colony: Jour. Paleo., v. 48, p. 217–226.Google Scholar
  13. Ehrlich, R. and Weinberg, B., 1970, An exact method for characterization of grain shape: Jour. Sed. Pet., v. 40, p. 205–212.Google Scholar
  14. Ehrlich, R., Orzeck, J., and Weinberg, B., 1974, Detrital quartz as a natural tracer—Fourier grain shape analysis: Jour. Sed. Pet., v. 44, p. 145–150.Google Scholar
  15. Fico, C., 1980, Development of ARTHUR II—a fast microprocessor controlled particle shape analyzer: M.S. thesis, University of South Carolina, Columbia, S.C. (unpublished).Google Scholar
  16. Gevirtz, J. L., 1976, Fourier analysis of bivalve outlines: implications on evolution and autecology: Jour. Math. Geol., v. 8, p. 151–163.Google Scholar
  17. Golub, G. H. and Reinsch, C., 1970, Singular value decomposition and least squares solutions: Numer. Math., v. 14, p. 403–420.Google Scholar
  18. Healy-Williams, N. and Williams, D. F., 1981, Fourier analysis of test shape of planktonic foraminifera: Nature, v. 289, p. 485–487.Google Scholar
  19. Kaesler, R. L. and Waters, J. A., 1972, Fourier analysis of the ostracode margin: Geol. Soc. Amer. Bull., v. 83, p. 1169–1178.Google Scholar
  20. Kennett, J. P., 1968,Globorotalia truncatulinoides as a paleo-oceanographic index: Science, v. 159, p. 1461–1463.Google Scholar
  21. Lohmann, G. P. and Carlson, J. J., 1981, Oceanographic significance of Pacific Late Miocene calcareous nannoplankton: Marine Micropaleo., v. 6, p. 553–579.Google Scholar
  22. Lohmann, G. P. and Denham, C. R., in press, Eigenshape analysis programs: Comput. Woods Hole Oceanog. Inst., Tech. Rep.Google Scholar
  23. Lohmann, G. P. and Malmgren, B. A., in press, Equatorward migration ofGloborotalia truncatulinoides through the Late Pleistocene. Submitted to Paleobio.Google Scholar
  24. Lorenz, E. N., 1959, Empirical orthogonal functions and statistical weather prediction: Rept. No. 1, Statistical Forcasting Project, Dept. of Meteorology, M.I.T.Google Scholar
  25. Malmgren, B. and Kennett, J. P., 1981, Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology, v. 7, p. 230–240.Google Scholar
  26. Pielou, E. C., 1969, An introduction to mathematical ecology, John Wiley & Sons, New York, 286 p.Google Scholar
  27. Prezbindowski, D. R. and Anstey, R. L., 1978, A Fourier-numerical study of a bryozoan fauna from the Threeforks Formation (Late Devonian) of Montana: Jour. Paleo., v. 52, p. 353–369.Google Scholar
  28. Schwarcz, H. P. and Shane, K. C., 1969, Measurement of particle shape by Fourier analysis: Sedimentology, v. 13, p. 213–231.Google Scholar
  29. Scott, G. H., 1975, Variation inGloborotalia miozea (Foraminiferida) from the New Zealand Neogene: N. Z. Jour. Geol. Geophys., v. 18, p. 865–880.Google Scholar
  30. Scott, G. H., 1980, The value of outline processing in the biometry and systematics of fossils: Paleontology, v. 23, p. 757–768.Google Scholar
  31. Scott, G. H., 1981, Upper Miocene biostratigraphy: DoesGloborotalia conomiozea occur in the Messinian? Rev. Espanola Micropaleo, v. 12, p. 489–506.Google Scholar
  32. Waters, J. A., 1977, Quantification of shape by use of Fourier analysis: the Mississippian blastoid genusPentremites: Paleobiology, v. 3, p. 288–299.Google Scholar
  33. Winant, C. D., Inman, D. L., and Nordstrom, C. E., 1975, Description of seasonal beach changes using empirical eigenfunctions: Jour. Geophys. Res., v. 80, p. 1979–1986.Google Scholar
  34. Younker, J. L. and Ehrlich, R., 1977, Fourier biometrics: harmonic amplitudes as multivariate shape descriptors: System Zool., v. 26, p. 336–342.Google Scholar
  35. Zahn, C. T. and Roskies, R. Z., 1972, Fourier descriptors for plane closed curves: IEEE Trans. Comput., v. C-21, p. 269–281.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • G. P. Lohmann
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations