Advertisement

Journal of Cancer Research and Clinical Oncology

, Volume 107, Issue 3, pp 206–210 | Cite as

A comparative study on proliferation, macromolecular synthesis and energy metabolism of in vitro-grown ehrlich ascites tumor cells in the presence of glucosone, galactosone and methylglyoxal

  • K. A. Reiffen
  • F. Schneider
Original Papers

Summary

  1. 1.

    Proliferation of in vitro grown Ehrlich ascites tumor cells is completely inhibited by 0.2–0.4 mM methylglyoxal and 1–2mM glucosone or galactosone without severely affecting viability (dye exclusion test); no phase-specific arrest of cell growth is observed.

     
  2. 2.

    Incorporation of [14C] thymidine into the acid-insoluble fraction of the cells decreases within a few minutes to less than 50% of that in controls in the presence of 0.4 mM methylglyoxal, and 2 mM glucosone or galactosone causes a comparable inhibition of DNA synthesis after 2 h or 4 h, respectively.

     
  3. 3.

    The action of 0.4 mM methylglyoxal inhibits incorporation of [14C] leucine within a few minutes by more than 70%, while 2 mM glucosone and galactosone are significantly less effective (50%–60% inhibition after 12 h).

     
  4. 4.

    While methylglyoxal and galactosone do not severely affect lactate production of the cells, 2 mM glucosone reduces glycolysis by 60%–70%; ATP/ADP ratios did not fall below 3.5 in the presence of the inhibitors (controls 4–6).

     
  5. 5.

    It is suggested that the reaction potentialities of the oxaldehyde function of the inhibitors play an important role in their growth-inhibitory acitivity, besides exerting a specific effect on hexokinase (glucosone) and UTP-trapping activity.

     

Key words

Ehrlich ascites tumor cells Methylglyoxal Glucosone Galactosone Growth inhibition DNA synthesis Protein Synthesis Energy Metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayne J (1963) Aldosuloses (osones). In: Whistler RL, Wolfrom ML (eds) Methods in carbohydrate chemistry vol 2. Academic Press, New York, pp 421–424Google Scholar
  2. DeLuca M, McElroy WD (1979) Purification and properties of firefly luciferase. Methods Enzymol 57:3–14Google Scholar
  3. Gutmann I, Wahlefeld AW (1974)l-(+)-Lactat; Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer (ed) Methoden der enzymatischen Analyse. 3. Aufl. Verlag Chemie, Weinheim, pp 1510–1514Google Scholar
  4. Holstege A, Schultz-Holstege C, Henninger H, Reiffen KA, Schneider F, Keppler DO (1982) Uridylate trapping induced by the C-2-modified O-glucose analogs glucosone, fluoroglucose, and glucosamine. Eur J Biochem 121:469–474Google Scholar
  5. Jocelyn PC (1972) Biochemistry of the SH group. Academic Press, New York, pp 209–210Google Scholar
  6. Karzel K, Schmidt J (1968) Über einige biologische Eigenschaften eines permanent in vitro wachsenden Stammes von Ehrlich Ascites Tumorzellen. Drug Res 18:1500–1504Google Scholar
  7. Keppler DO, Schulz-Holstege C, Fauler J, Reiffen KA, Scheneider F (1982) Uridylate trapping, induction of CTP deficiency and stimulation of pyrimidine synthesis de novo byd-galactosone. Biochem J 206:139–146Google Scholar
  8. Kozarich JW, Deegan L (1979) 7-Methylguanosine-dependent inhibition of globin mRNA translation by methylglyoxal. J Biol. Chem 254:9345–9348Google Scholar
  9. Lowry OH, Rosebrough NJ, Farry AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  10. McComb RB, Yushok, WD (1959) Properties of particulate hexokinase of the Krebs-2 ascites tumor. Biochim Biophys Acta 34: 515–526Google Scholar
  11. Ray S, Ray M (1982) Purification and characterization of NAD and NADP-linked α-ketoaldehyde dehydrogenase involved in catalyzing the oxidation of methyglyoxal to pyruvate. J Biol Chem 257:10566–10570Google Scholar
  12. Reiffen KA, Löffler M, Schneider F (1981) The effect of glucosone on the proliferation and energy metabolism of in vitro-grown Ehrlich ascites tumor cells. Z Naturforsch 36c:225–261Google Scholar
  13. Schneider F (1978) Die Funktion des Arginins in den Enzymen. Naturwissenschaften 65:376–381Google Scholar
  14. Szent-Gyorgyi A (1965) Cell division and cancer. Science 149:34–37Google Scholar
  15. Theander O (1980) In: Pigman W, Horton D (eds) The carbohydrates, chemistry and biochemistry, 2nd edn. Academic Press, New York, pp 1063–1068Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • K. A. Reiffen
    • 1
  • F. Schneider
    • 1
  1. 1.Institut für Physiologische Chemie II der Philipps-Universität MarburgMarburgFederal Republic of Germany

Personalised recommendations