Transition Metal Chemistry

, Volume 14, Issue 5, pp 341–346 | Cite as

Synthesis and properties of binuclear nitride-bridged iron octaphenyltetraazaporphyrin. E.p.r. studies of dioxygen adduct formation

  • Pavel A. Stuzhin
  • Lechoslaw Latos-Grażyński
  • Adam Jezierski
Full Papers


The synthesis and characterization are reported for (μ-nitrido)bis[(octaphenyltetraazaporphyrinato)iron] ([OPTAP)Fe]2N). The [(OPTAP)Fe]2N dimer is paramagnetic with one unpaired electron per dimer unit and shows a typical axially symmetric e.p.r. spectrum in non-polar solvents at liquid N2 temperature (g=2.126, g=2.001), with well-resolved superhyper-fine splitting resulting from the μ-nitrido bridge (A N =2.48mT, A N =2.60mT).

A pyridine monoadduct of [(OPTAP)Fe]2N, formed in frozen glasses has been characterised by changes in e.p.r. spectra. Electronic spectra show no pyridine adduct formation at 298 K. Mössbauer parameters (IS=−0.042 mm/s, QS=1.769mm/s at 298K) are indicative of the predominant iron(IV) character in [(OPTAP)Fe]2N.

The pyridine monoadduct binds O2 reversibly. The O2 adduct was characterized by e.p.r. spectroscopy (g1=2.062, g2=2.007, g3=2.000). O2 titration as monitored by e.p.r. shows that the adduct stoichiometry is one O2 per dimer. A spin-pairing model for O2 binding accounts for the observed O2-[(OPTAP)Fe]2N interaction.


Iron Spectroscopy Physical Chemistry Inorganic Chemistry Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. D. Summerville and I. A. Cohen,J. Am. Chem. Soc.,98, 1747 (1976).Google Scholar
  2. (2).
    W. R. Scheidt, D. A. Summerville and I. A. Cohen,J. Am. Chem. Soc.,98, 6623 (1976).Google Scholar
  3. (3).
    K. M. Kadish, L. A. Bottomley, J. G. Brace and N. Winograd,J. Am. Chem. Soc.,102, 4341 (1980).Google Scholar
  4. (4).
    G. A. Shick and D. F. Bocian,J. Am. Chem. Soc. 102, 7982 (1980).Google Scholar
  5. (5).
    K. M. Kadish, R. K. Rhodes, L. A. Bottomley and H. Goff,Inorg. Chem.,20, 3195 (1981).Google Scholar
  6. (6).
    L. A. Bottomley and B. B. Garret,Inorg. Chem. 21, 1260 (1982).Google Scholar
  7. (7).
    G. A. Schick, E. W. Findsen and D. F. Bocian,Inorg. Chem.,21, 2885 (1982).Google Scholar
  8. (8).
    G. A. Schick and D. F. Bocian,J. Am. Chem. Soc.,105, 1830 (1983).Google Scholar
  9. (9).
    I. A. Cohen,Structure and Bonding,80, 1 (1980).Google Scholar
  10. (10).
    D. R. English, D. N. Hendrickson and K. S. Suslick,Inorg. Chem. 22, 367 (1983).Google Scholar
  11. (11).
    D. F. Bocian, E. W. Findsen, J. A. Hofmann Jr., G. A. Schick, D. R. English, D. N. Hendrickson and K. S. Suslick,Inorg. Chem.,23, 800 (1984).Google Scholar
  12. (12).
    V. L. Goedken and C. Ercolani,J. Chem. Soc. Chem. Commun., 378 (1984).Google Scholar
  13. (13).
    L. A. Bottomley, J.-N. Gorce, V. L. Goedken and C. Ercolani,Inorg. Chem.,24, 3733 (1985).Google Scholar
  14. (14).
    B. J. Kennedy, K. S. Murray, H. Homborg and W. Kalz,Inorg. Chem. Acta,134, 19 (1987).Google Scholar
  15. (15).
    B. D. Berezin and O. G. Khelevina, inPorphyrins-Structure, Properties and Synthesis, Nauka, Moscow, 1985, p. 83.Google Scholar
  16. (16).
    A. H. Cook and R. P. Linstead,J. Chem. Soc., 929 (1937).Google Scholar
  17. (17).
    B. D. Berezin, O. G. Khelevina and G. B. Brin,Zh. Fiz. Khom.,56, 1490 (1980).Google Scholar
  18. (18).
    S. S. Eaton and G. R. Eaton,Inorg. Chem.,19, 1095 (1980).Google Scholar
  19. (19).
    W. Hiller, J. Strahle, A. Datz, K. Hanack, W. E. Hatfield, L. W. ter Haar and P. Gutlich,J. Am. Chem. Soc.,106, 329 (1984).Google Scholar
  20. (20).
    R. R. McGarvey,J. Phys. Chem.,71, 51 (1967).Google Scholar
  21. (21).
    B. A. Goodman and J. B. Raynor,Adv. Inorg. Chem. Radio chem.,13, 135 (1970).Google Scholar
  22. (22).
    A. Jezierski and B. Jeżowska-Trzebiatowska,Polyhedron,9/10, 1065 (1984).Google Scholar
  23. (23).
    K. Tatsumi and R. Hoffman,J. Am. Chem. Soc.,103, 3330 (1981).Google Scholar
  24. (24).
    V. B. Tshenin, B. D. Berezin, O. G. Khelevina, P. A. Stuzhin and F. Yu. Telegin,Zh. Org. Khim.,21, 1571 (1985).Google Scholar
  25. (25a).
    F. A. Walker, D. Beroiz and K. M. Kadish,J. Am. Chem. Soc.,94, 3484 (1976).Google Scholar
  26. (25b).
    B. J. James, in D. Dolphin (Ed.,The Porphyrins, Vol V, Academic Press, 1978, p. 265.Google Scholar
  27. (26).
    R. D. Jones, D. A. Summerville and F. Basolo,Chem. Rev.,79, 139 (1979).Google Scholar
  28. (27).
    B. S. Tovrog, D. J. Kitko and R. S. Drago,J. Am. Chem. Soc.,98, 5144 (1976).Google Scholar
  29. (28).
    T. D. Smith and J. R. Pilbrow,Coord. Chem. Rev.,39, 295 (1981).Google Scholar
  30. (29).
    E. Jorin, A. Schwege and Hs. H. Gunthard,J. Am. Chem. Soc.,105, 4277 (1983).Google Scholar

Copyright information

© Chapman and Hall Ltd 1989

Authors and Affiliations

  • Pavel A. Stuzhin
    • 1
  • Lechoslaw Latos-Grażyński
    • 2
  • Adam Jezierski
    • 2
  1. 1.Institute of Chemical TechnologyIvanovoU.S.S.R.
  2. 2.Institute of ChemistryUniversity of WrocławWrocławPoland

Personalised recommendations