Meteorology and Atmospheric Physics

, Volume 59, Issue 1–2, pp 123–140 | Cite as

Cloud observations with a polarimetric 33 GHz and 95 GHz radar

  • S. M. Sekelsky
  • R. E. McIntosh


The University of Massachusetts' Microwave Remote Sensing Laboratory (MIRSL) has developed a unique high spatial resolution multiparameter radar under sponsorship from the Department of Energy's Atmospheric Radiation Measurement (ARM) program. The Cloud Profiling Radar System (CPRS) uses a single one-meter diameter dielectric lens antenna to make collocated polarimetric and Doppler measurements at both 33 GHz and 95 GHz. The polarization of each transmitted pulse at either frequency can be selected on a pulse-to-pulse basis. The radar and supporting hardware are mounted on a truck that serves as a mobile laboratory. The truck-based platform permits CPRS to operate in remote locations and also serves as an economical means of transporting the system.

This paper describes the CPRS hardware and presents preliminary vertically pointing observations of mixed-phase stratus clouds obtained in the summer of 1993 during the first field test of the system. Measurements show Mie scattering in the ice region, melting layer and rain region of the clouds observed. To illustrate CPRS potential for particle sizing, models of differential reflectivity and differential mean Doppler velocity are used to estimate median volume diameter,D0, from dual-wavelength reflectivity and Doppler measurments of rain.


Radar Remote Sensing Mobile Laboratory Melting Layer Support Hardware 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aydin, K., Seliga, T. A., 1984: Differential radar scattering properties of model hail and mixed-phase hydrometeors.Radio Sci.,19(1), 58–66.Google Scholar
  2. Aydin, K., Tang, C., Pazmany, A. L., Mead, J. B., McIntosh, R. E., Hervig, M. E., Kelly, R., Vali, G., 1992: 94 GHz polarimetric radar scattering from ice crystals. In: Proc. 11th International Conf. on Clouds and Precip., Montreal, Canada.Google Scholar
  3. Bringi, V. N., 1986a: Multiparameter radar measurements in Colorado convective storms. Part i: Graupel melting studies.J. Atmos. Sci.,43(22), 2545–2563.Google Scholar
  4. Bringi, V. N., 1986b: Multiparameter radar measurements in Colorado convective storms, part ii: Hail detection studies.J. Atmos. Sci. 43(22), 2564–2577.Google Scholar
  5. Bringi, V. N., Hendry, A., 1990: Technology of polarization diversity radars for meterology. In: Atlas, D., (ed.)Radar in Meteorology, pp. 153–190. Boston, Mass.: American Meteorological Society.Google Scholar
  6. Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Ackerman, T. P., Verlinde, J., Babb, D., Peters, R. M., Syrett, W. J., 1995: An evaluation of a 94-GHz radar for radar remote sensing of cloud properties.J. Atmos. Oceanic Technol.,12, 201–229.Google Scholar
  7. Doviak, R. J., Zrnić, D. S., 1984:Doppler Radar and Weather Observations. New York: Academic Press.Google Scholar
  8. Eccles, P. J., Atlas, D. 1973: A dual-wavelength radar hail detector.J. Climate Appl. Meteor. 12, 847–856.Google Scholar
  9. Gunn, R., Kizner, G. D., 1949: The terminal velocity of fall for water droplets in stagnant air.J. Meteorol.,6, 243–248.Google Scholar
  10. Hardy, K. R., Atlas, D., Glover, K. M., 1966: Multiwavelength backscatter from the clear atmosphere.J. Geophys. Res.,71(6), 1537–1552.Google Scholar
  11. Lhermitte, R. M., 1987: Observations of stratiform rain with 94 GHz and s-band doppler radar. Technical Report AFGL-TR-0268, Air Force Geophysics Laboratory.Google Scholar
  12. Marshall, J. S., Palmer, W. M. K., 1948: The distribution of raindrops with size.J. Meteorol. 5, 165–166.Google Scholar
  13. Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds.J. Atmos. Sci.,48(8), 1062–1070.Google Scholar
  14. Matrosov, S. Y., 1993: Possibilities of cirrus particle sizing from dual-frequency radar measurements.J. Geophys. Res.,98(11N), 20675–20683.Google Scholar
  15. McCormick, G. C., Hendry, A., 1975: Principles for the radar determination of the polarization properties of precipitation.Radio Science,10(4), 421–434.Google Scholar
  16. Mead, J. B., Pazmany, A. L., Sekelsky, S. M., McIntosh, R. E., 1994: Millimeter-wavelength radars for remotely sensing clouds and precipitation. Proceeding of the IEEE,82, 1891–1906.Google Scholar
  17. Miloshevich, L. M., Heymsfeld, A. J., Norris, P. M., 1992: Microphysical measurements in cirrus clouds from ice crystal replicator sondes launched during fire-ii.Proceedings of 11th International Conference on Clouds and Precipitation, Montreal, Quebec.Google Scholar
  18. Mooradd, D. C., 1993: Design, development and construction of a dual-frequency, dual-polarized millimeter wave cloud profiling radar antenna. Master's thesis, University of Massachusetts at Amherst.Google Scholar
  19. Pasqualucci, F. B., Bartram, B. W., Kropfli, R. A., Moninger, W. R., 1983: A millimeter-wavelength dual-polarization doppler radar for cloud and precipitation studies.J. Climate Appl. Meteor.,22, 758–765.Google Scholar
  20. Pazmany, A. L., Galloway, J., Popstefanija, I., McIntosh, R. E., Kelly, R., Vali, G., 1993: A three millimeter airborne radar for high resolution cloud measurements. International Conference on Geoscience and Remote Sensing, Tokyo, Japan.Google Scholar
  21. Pazmany, A. L., Mead, J. B., McIntosh, R. E., Hervig, M., Kelly, R., Vali, G., 1994: 95 GHz polarimetric radar measurements of orographic cap clouds from the Elk Mountain Wyoming Observatory.J. Atmos. Oceanic Technol.,11(1), 140–153.Google Scholar
  22. Pruppacher, H. R., Klett, J. D., 1978:Microphysics of Clouds and Precipitation. Dordrecht: D. Reidel.Google Scholar
  23. Richard, V. W., Kammerer, J. E., Wallace, H. B., 1988: Rain backscatter measurements at millimeter wavelengths.IEEE Transactions on Geoscience and Remote Sensing,26(3), 244–252.Google Scholar
  24. Skolnik, M. I., 1980:Introduction to Radar Systems. New York: McGraw Hill.Google Scholar
  25. Smith, P. L., 1986: On the sensitivity of weather radars.J. Atmos. Oceanic Technol.,3, 704–713.Google Scholar
  26. U K GEWEX Forum, 1993:Concept for a Space-borne Cloud Radar System, London: 14 ppGoogle Scholar
  27. U. S. Department of Energy, 1993:Atmospheric Radiation Measurement Program Plan, Washington, D.C., 116 pp.Google Scholar
  28. Ulaby, F., Moore, R., Fung, A., 1982:Microwave Remote Sensing: Active and Passive, vol. 1. Norwood, USA: Artech House.Google Scholar
  29. Ulaby, F. T., Elachi, C. 1990:Radar Polarimetry for Geoscience Applications. Norwood, USA: Artech House Inc.Google Scholar
  30. Vali, G., Kelley, R., Pazmany, A. L., Mead, J. B., McIntosh, R. E., 1993: Observations of clouds with an airborne, 95 GHz polarimetric radar.Proc. 26th International Conf on Radar Meteorology, Norman, OK.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • S. M. Sekelsky
    • 1
  • R. E. McIntosh
    • 1
  1. 1.College of Engineering, Microwave Remote Sensing LaboratoryUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations