Theoretical and Mathematical Physics

, Volume 58, Issue 1, pp 40–46 | Cite as

Connection between the approximating Hamiltonian method and theta-function integration

  • E. D. Belokolos
  • D. Ya. Petrina


Hamiltonian Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Bogolyubov, “On the model Hamiltonian in the theory of superconductivity,” Preprint R-511 [in Russian], JINR, Dubna (1960); Selected Works, Vol. 3 [in Russian], Naukova Dumka, Kiev (1971), pp. 110–173.Google Scholar
  2. 2.
    N. N. Bogolyubov (Jr), A Method of Investigating Model Hamiltonians [in Russian], Nauka, Moscow (1974); N. N. Bogolyubov (Jr), I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, and N. S. Tonchev, The Approximating Hamiltonian Method in Statistical Physics [in Russian], Published by Bulgarian Academy of Sciences, Sofiya (1981), p. 245.Google Scholar
  3. 3.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons: The Inverse Scattering Method [in Russian], Nauka, Moscow (1980), p. 320.Google Scholar
  4. 4.
    E. D. Belokolos, Teor. Mat. Fiz.,45, 268 (1980).Google Scholar
  5. 5.
    S. P. Novikov, Funktsional. Analiz i Ego Prilozhen.,8, 54 (1974).Google Scholar
  6. 6.
    N. N. Bogolyubov (Jr) and D. Ya. Petrina, Teor. Mat. Fiz.,33, 231 (1977);37, 246 (1978).Google Scholar
  7. 7.
    B. A. Dubrovin, Funktsional. Analiz i Ego Prilozhen.,9, 41 (1975).Google Scholar
  8. 8.
    P. D. Lax, Appl. Math.,28, 141 (1975).Google Scholar
  9. 9.
    H. Hochstadt, Arch. Rational Mech. Anal.,19, 353 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • E. D. Belokolos
  • D. Ya. Petrina

There are no affiliations available

Personalised recommendations