Advertisement

Meteorology and Atmospheric Physics

, Volume 65, Issue 1–2, pp 11–30 | Cite as

Relative optical mass functions for air, water vapour, ozone and nitrogen dioxide in atmospheric models presenting different latitudinal and seasonal conditions

  • C. Tomasi
  • V. Vitake
  • L. V. De Santis
Article

Summary

A study of the dependence features of the relative optical mass functions for air, water vapour, ozone and nitrogen dioxide on the apparent solar zenith angle θ was performed by calculating these optical parameters by means of the well-known computer code LOWTRAN 7 at several values of θ and for nine atmospheric models characterized by different latitudes and seasons. Moreover, other investigations were performed on the dependence features of (i) the relative optical air mass on the thermal characteristics of the low troposphere, (ii) the relative optical water vapour mass on the vertical distribution characteristics of absolute humidity in the troposphere, and (iii) the relative optical mass function for ozone and nitrogen dioxide on the shape characteristics of the vertical profiles of the two gaseous concentrations and the concentration peak altitudes. The results are compared with the values given by the two simple formulas proposed by Kasten (1966) for air and water vapour and the formulas defined by Young (1969) and Staehelin et al. (1995) for ozone and nitrogen dioxide. From this comparison, a wide set of correction factors were obtained which can be conveniently used in the analysis of multispectral sun-radiometric measurements for calculating, with a very high precision, the values of the four optical mass functions at all the angles θ in the 0° to 87° range, corresponding to the various latitudinal and seasonal conditions described by the nine atmospheric models.

Keywords

Ozone Water Vapour Zenith Angle Atmospheric Model Solar Zenith Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bhartia, P. K., Fleig, A., Froidevaux, L., Heath, D., Hilsenrath, E., Logan, J. A., McCormick, P., MegiE, G., Nagatani, R., Russell, J. M. III, Thomas, R. J., 1985: Oxygen Species. In:Atmospheric Ozone 1985, WMO, Global Ozone Research and Monitoring Project, Report No. 16, Vol. II, 401–440.Google Scholar
  2. Brewer, A. W., 1973: A replacement for the Dobson spectrophotometer?.Pure Appl. Geophys.,106, 919–927.Google Scholar
  3. Brewer, A. W., McElroy, C. T., Kerr, J. B., 1973: Nitrogen dioxide concentrations in the atmosphere.Nature,246, 129–133.Google Scholar
  4. Callis, L. B., Natarajan, M., 1986: The Antarctic ozone minimum: relationship to odd nitrogen, odd chlorine, the final warming, and the 11-year solar cycle.J. Geophys. Res.,91, 10771–10796.Google Scholar
  5. Dobson, G. M. B., 1931: A photoelectric spectrophotometer for measuring atmospheric ozone.Proc. Phys. Soc.,43, 324–328.Google Scholar
  6. Gernandt, H., 1987: The vertical ozone distribution above the GDR-Research Base, Antarctica in 1985.Geophys. Res. Letters,14, 84–86.Google Scholar
  7. Grose, W. L., Jones, R. L., McCormick, M. P., Molina, M. J., O'Neil, A., Poole, L. R., Shine, K. P., Solomon, S., Plumb, R. A., Pope, V., 1989: Polar Ozone. In:Scientific Assessment of Stratospheric Ozone 1989, WMO, Global Ozone Research and Monitoring Project, Report No. 20, Vol. I, 1–161.Google Scholar
  8. Harries, J. E., Brasseur, G., Coffey, M. T., Fisher, H., Gille, J., Jones, R., Lousnard, N., McCormick, M. P., Noxon, J., Owens, A. J., Pyle, J., Ridley, B. A., Roscoe, H., Schmeltekopf, A. L., Solomon, S., Sze, N. D., 1985: Nitrogen Species. In:Atmospheric Ozone 1985, WMO, Global Ozone Research and Monitoring Project, Report No. 16, Vol. II, 497–604.Google Scholar
  9. ISO Standard Atmosphere, 1972: International Organization for Standardization,Standard Atmosphere, International Standard ISO 2533.Google Scholar
  10. Iqbal, M., 1983:An Introduction to Solar Radiation. Toronto, Academic Press, 390 pp.Google Scholar
  11. Iwasaka, Y., Kondoh, K. 1987: Depletion of Antarctic ozone: height of ozone loss region and its temporal changes.Geophys. Res. Letters,14, 87–90.Google Scholar
  12. Kasten, F., 1966: A new table and approximation formula for the relative optical air mass.Arch. Met. Geophys. Biokl., Ser. B,14 (2), 206–223.Google Scholar
  13. Kasten, F., Young, A. T., 1989: Revised optical air mass tables and approximation formula.Appl. Opt.,28, 4735–4738.Google Scholar
  14. Kneizys, F. X., Shettle, E. P., Abreu, L. W., Chetwynd, J. H., Anderson, G. P., Gallery, W. O., Selby, J. E. A., Clough, S. A., 1988:User Guide to LOWTRAN 7, Environ. Res. Papers, No. 1010, AFGL-TR-88-0177. Air Force Geophysics Laboratory, Hanscom, Massachusetts, 137 pp.Google Scholar
  15. Kulkarni, r. N., 1975: Measurements of NO2 using the Dobson spectrophotometer.J. Atmos. Sci.,32, 1641–1643.Google Scholar
  16. London, J., 1980: Radiative energy sources and sinks in the stratosphere and mesosphere. In: Aikin, A. C., (ed.)Proceedings of the NATO Advanced Study Institute on Atmospheric Ozone: Its Variations and Human Influences. Washington D. C.: U. S. Department of Transportation, 703–721.Google Scholar
  17. McClatchey, R. A., Fenn, R. W., Selby, J. E. A., Volz, F. E., Garing, J. S., 1972:Optical Properties of the Atmosphere (Third Edition), Environ. Res. Papers, No. 411, AFCRL-72-0497, Air Force Geophysics Laboratory, L. G. Hanscom Field. Massachusetts, 108 pp.Google Scholar
  18. Minzner, R. A., Champion, K. S. W., Pond, H. L., 1959:The ARDC Model Atmosphere, 1959. (Air Force Surveys in Geophysics, No. 115) Massachusetts: Air Force Cambridge Research Center.Google Scholar
  19. Nakajima, T., Tonna, G., Rao, R., Boi, P., Kaufman, Y., Holben, B., 1996: Use of sky brightness measurements from ground for remote sensing of particulate polydispersions.Appl. Opt.,35, 2672–2686.Google Scholar
  20. Penndorf, R., 1957: Tables of the refractive index of the standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μm and their application to the atmospheric optics.J. Opt. Soc. Am.,47, 176–182.Google Scholar
  21. Schiff, H. J., Burnet, C., Carli, B., DeMore W. B., deZafra, R., Evans, W. F. J., Guthrie, P. D., Hampson, R. F., Heaps, W., Jones, R., Kley, D., Prather, M., Russell, J. M. III, Schmidt, U., Traub, W. A., Watson, R. T., 1985: Hydrogen Species. In:Atmospheric Ozone 1985, WMO, Global Ozone Research and Monitoring Project, Report No. 16, Vol. II, 441–496.Google Scholar
  22. Shaw, G. E., 1976: Error analysis of multi-wavelength sun photometry.Pure Appl. Geophys.,114, 1–14.Google Scholar
  23. Sissenwine, N., 1969. Standard and Supplemental Atmospheres. In: Ferrell Rex, D., (ed.)World Survey of Climatology—Climate of the Free Atmosphere, Vol. 4 Amsterdam: Elsevier, pp. 5–44.Google Scholar
  24. Solomon, S., Garcia, R. R., Stordal, F., 1985. Transport processes and ozone perturbation.J. Geophys. Res.,90, 12981–12990.Google Scholar
  25. Staehelin, J., Schill, H., Högger, B., Viatte, P., Levrat, G., Gamma, A., 1995. Total ozone observation by sun photometry at Arosa, Switzerland.Opt. Engin.,34, 1977–1986.Google Scholar
  26. Thomason, L. W., Herman, B. M., Reagan, J. A., 1983: The effect of atmospheric attenuators with structured vertical distributions on air mass determinations and Langley plot analyses.J. Atmos. Sci.,40, 1851–1854.Google Scholar
  27. Tomasi, C., Prodi, F., Sentimenti, M., Cesari, G., 1983: Multiwavelength sun-photometers for accurate measurements of atmospheric extinction in the visible and near-IR spectral range.Appl. Opt.,22, 622–630.Google Scholar
  28. Tomasi, C., 1984: Vertical distribution features of atmospheric water vapor in the Mediterranean, Red Sea and Indian Ocean.J. Geophys. Res.,89, 2563–2566.Google Scholar
  29. Tomasi, C., Deserti, M., 1988:Vertical Distribution Models of Water Vapour for Radiative Transfer Calculations in the Atmosphere. Techn. Paper No. 1 FISBAT-TP-88/1, C. N. R., Bologna, Italy, 196 pp.Google Scholar
  30. Tomasi, C., Vitale, V., Tagliazucca, M., Gasperoni, L., 1990: Infrared hygrometry measurements at Terra Nova Bay.SIF Conference Proceedings,27, 187–200.Google Scholar
  31. U. S. Standard Atmosphere Supplements, 1966: edited by Environmental Science Services Administration, National Aeronautics and Space Administration and United States Air Force, Washington D. C., U. S. Government Printing Office, 11–145.Google Scholar
  32. Vitale, V., Tomasi, C., 1994: A correction procedure for determining the vertical profile of absolute humidity from the radiosounding measurements taken in the Antarctic atmosphere.SIF Conference Proceedings,45, 87–118.Google Scholar
  33. Volz, F. E., 1974: Economical multispectral sun photometer for measurements of aerosol extinction from 0.44 μm to 1.6 μm and precipitable water.Appl. Opt.,13, 1732–1733.Google Scholar
  34. Young, A. T., 1969: High-resolution photometry of a thin planetary atmosphere.Icarus,11, 1–23.Google Scholar

Copyright information

© Springer-Verlag 1998

Authors and Affiliations

  • C. Tomasi
    • 1
  • V. Vitake
    • 1
  • L. V. De Santis
    • 2
  1. 1.Istituto FISBAT-CNRBolognaItaly
  2. 2.Istituto ISIATA-CNRLecceItaly

Personalised recommendations