Meteorology and Atmospheric Physics

, Volume 54, Issue 1–4, pp 241–260 | Cite as

Passive microwave signatures of landscapes in winter

  • C. Mätzler


The successful application of passive microwave sensors requires signatures for the unambiguous inversion of the remote sensing data. Due to the large number of object types and large variability of physical properties, the inversion of data from land surfaces is a delicate and often ambiguous task. The present paper is a contribution to the assessment of multi-frequency passive microwave signatures of typical objects on land in winter. We discuss the behaviour of measured emissivities at vertical and horizontal polarization over the frequency range of 5 to 100 GHz (incidence angle of 50 degrees) of water and bare soil surfaces, grass and snowcovers under various conditions. These data and their variabilities lead us toward a classificaion algorithm for some, but not all object classes. Most snowcovers can easily be discriminated from other surfaces, difficulties occur for fresh powder snow if 94 GHz data are not available. The problem of wet snow has found a solution by using a certain combination of observables.

In addition to snowcover types we find large differences between frozen and unfrozen bare soil. On the other hand the different situations of grasscovers show all very similar emissivities.

For the estimation of physical parameters we propose algorithms for certain object classes. The estimation of surface temperature, especially for snow-free land, seems to be feasible, also the estimation of the snow liquid water content at the surface. For estimating soil moisture lower frequencies (e.g. 1.4 GHz) should be used.

For the estimation of the Water Equivalent, WE, we cannot yet find a definitive solution. Certain correlations exist for dry winter snow between WE and observables at frequencies between 10 and 35 GHz. Especially the polarization difference at 10 GHz shows a monotonous increase with increasing WE. Algorithms using higher frequencies are more sensitive to WE, however, they are subject to ambiguities.


Emissivity Bare Soil Measured Emissivity Polarization Difference Object Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armand, N. A., Kutuza, B. G., 1993: Complex of Remote Sensing of the Earth, Priroda, Scientific Program, Version 2, Inst. Radio Eng, Mokhovaija st. 11. Moscow, GSP-3, 103907 Russia.Google Scholar
  2. Colbeck, S. C., 1982: An overview of seasonal snow metamorphism.Rev. Geophys. Space Sci.,20, 45–61.Google Scholar
  3. Denoth, A. 1989: Snow dielectric measurements.Adv. Space Res.,9, 1, (1)233-(1)243.Google Scholar
  4. Gloersen, P., Cavalieri, D. J., Change, A. T. C., Wilheit, T. T., Campbell, W. J., Johannessen, O. M., Katsaros, K. B., Künzi, K. F., Ross, D. B., Staelin, D., Windsor, E. P. L., Barath, R. T., Gudmansen, P., Langham, E., Ramseier, R. O., 1984: A summary of results from the first Nimbus-7 SMMR observations.J. Geophys. Res.,89 (D4), 5335–5344.Google Scholar
  5. Gloersen, P., Campbell, W. J., 1991. Recent variations in Arctic and Antarctic sea-ice covers.Nature, 352, 33–36.Google Scholar
  6. Hall, D. K., Foster, J. L., Chang, A. T. C., Rango, A., 1981: Freshwater ice thickness observations using passive micro-wave sensors.IEEE Trans. Geosci. and Remote Sensing,GE-19, 189–192.Google Scholar
  7. Hallikainen, M., 1984: Retrieval of snow water equivalent from Nimbus-7 SMMR data: effect of land-cover categories and weather conditions.IEEE J. Oceanic Engin.,OE-9, 372–376.Google Scholar
  8. Hallikainen, M. T., Jolma, P. A., 1986: Retrieval of the water equivalent of snow cover in Finland by satellite microwave radiometry.IEEE Trans. Geosci. and Remote Sensing,GE-24, 855–862.Google Scholar
  9. Hollinger, J. P., 1990: Editor of special issue on SSMI.IEEE Trans. Geoscience and Remote Sensing. 28, (5), 779–845.Google Scholar
  10. Jackson, T. J., Schmugge, T. J., 1989: Passive microwave remote sensing for soil moisture: some supporting research.IEEE Trans. Geosci. and Remote Sensing,27, 225–235.Google Scholar
  11. Künzi, K. F., Patil, S., Rott, H., 1982: Snow-cover parameters retrieved from Nimbus-7 SMMR data.IEEE Trans. Geosci. and Remote Sensing,GE-20, 452–467.Google Scholar
  12. Mätzler, C., Schanda, E., Good, W., 1982: Towards the definition of optimum sensor specifications for microwave remote sensing of snow.IEEE Trans. Geosci. and Remote Sensing,GE-20, 57–66.Google Scholar
  13. Mätzler, C., Aebischer, H., Schanda, E., 1984: Microwave dielectric properties of surface snow.IEEE. J. Oceanic Engin.,OE-9, 366–371.Google Scholar
  14. Mätzler, C., Sume, A., 1986: Microwave measurements of snow in Davos, May–June 1986,Forsvarets Forskningsansalt (FOA), Rapport C30437-3.2, Linköping, Sweden, December 1986.Google Scholar
  15. Mätzler, C., Wegmüller, U., 1987: Dielectric properties of fresh-water ice at microwave frequencies.J. Phys. D: Appl. Phys.,20, 1623–1630; Errata (1988),21, 1660.Google Scholar
  16. Mätzler, C., 1987: Application of the interaction of microwaves with the natural cover.Remote Sensing Rev.,2, 259–392.Google Scholar
  17. Mätzler, C., 1990: Seasonal evolution of microwave radiation from an oat field.Remote Sensing Environ.,31, 161–173.Google Scholar
  18. Mätzler, C., 1992a: Passive microwave signature catalog 1989–1992.Report of the Institute of Applied Physics, Bern, December 1992Google Scholar
  19. Mätzler, C., 1992b: Ground-based observations of atmospheric radiation at 5, 10, 21, 35 and 94 GHz.Radio Science,27, 403–415.Google Scholar
  20. Mätzler, C., Wegmüller, U., 1993: Progress in multi-frequency radiometry of natural objects.Proceedings of ESA-NASA Workshop St. Lary, France, January 1993.Google Scholar
  21. Menard, Y., Thornbury, A., 1989: Feasibility study for a Multi-frequency Imaging Microwave Radiometer, Final Report MIMR-RP-020, Marconi Space Systems, Ports-mouth, England.Google Scholar
  22. Neale, C. M. U., McFarland, M. J., Chang, K., 1990: Land-surface-type classification using microwave bright-ness temperatures from the Special Sensor Microwave/ Imager.IEEE Trans. Geosci. and Remote Sensing,28, (5), 829–838.Google Scholar
  23. Reber, B., Mätzler, C., Schanda, E., 1987: Microwave signatures of snow crusts-modelling and measurements.Int. J. Remote Sensing,8, 1649–1665.Google Scholar
  24. Rott, H., 1989: Multispectral microwave signatures of the antarctic ice sheet. In: Pampaloni, P. (ed.)Microwave Radiometry and Remote Sens. Appl. Utrecht: VSP, 89–101.Google Scholar
  25. Schanda, E., Hofer, R., 1977: Microwave multispectral investigation of snow.Proc. 11th Internat. Symp. on Remote Sensing of Environment, 601–607, Ann Arbor, Mi.Google Scholar
  26. Schanda, E., 1986:Physical Fundamentals of Remote Sensing. Berlin, Heidelberg, New York, Tokyo: Springer.Google Scholar
  27. Sume, A., Mätzler, C., Hüppi, R., Schanda, E., 1988: Microwave radiometer and scatterometer measurements of vegetation.Forsvarets Forskingsanstalt (FOA) Rapport C30494-3.2, Linköping, Sweden.Google Scholar
  28. Süss, H., Grüner, K., Wilson, W. J., 1989: Passive millimeterwave imaging, a tool for remote sensing.Alta Frequenza,LVIII (5–6), 457–465.Google Scholar
  29. Tiuri, M., Hallikainen, M., 1981: Microwave emission characteristics of snow covered earth surfaces measured by the Nimbus-7 satellite.11th European Microwave Conference, Amsterdam, September 1981.Google Scholar
  30. Ulaby, F. T., Moore, R. K., Fung, A. K., 1981, 1982, 1986: Microwave remote sensing, active and passive.Dedham, Massachusetts: Artech House,1, 1981,2, 1982,3, 1986.Google Scholar
  31. Wang, J. R., Chang, A. T. C., Sharma, A. K., 1992: On the estimation of snow depth from microwave radiometric measurements.IEEE Trans. Geosci. and Remote Sensing,30, 785–792.Google Scholar
  32. Wegmüller, U., Mätzler, C., Weise, T., 1993: Absorption von Mikrowellen in Nadelbäumen.Auftragsstudie zuhanden der PTT, Institute of Applied Physics, University of Bern, March 1993.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • C. Mätzler
    • 1
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland

Personalised recommendations