Meteorology and Atmospheric Physics

, Volume 60, Issue 1–3, pp 19–36 | Cite as

On the Tropical Rainfall Measuring Mission (TRMM)

  • J. Simpson
  • C. Kummerow
  • W. -K. Tao
  • R. F. Adler


The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of climate change. Since the tropics are mainly covered with oceans, with some deserts and jungles, the monthly precipitation is not known within a factor of two. Hence the only way to measure it adequately for climate and general circulation models is from space. The paper describes the Tropical Rainfall Measuring Mission (TRMM). This joint Japan-U.S. cooperative Earth Probe satellite will be launched from Japan in 1997 for a three-year mission. The scientific basis of the instrument and orbit selection is explained. The precipitation instrument complement comprises the first rain radar to be flown in space (PR), and a multi-channel passive microwave sensor (TMI) improved relative to the SSM/I1 by an additional channel at 10 GHz. The third rain instrument is a five-channel VIS/IR (VIRS) sensor. Progress in construction of instruments, observatory, data system, and the ground validation program is summarized. A report is also given concerning development of the algorithms by which rainfall and its associated latent heat release will be calculated from the several instruments, separately and in combination, and how the scientists will interact with the data system to obtain the 32 rain data products necessary to fulfill the science requirements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., Huffman, G. J., Keehn, P. R., 1994: Global rain estimates from microwave-adjusted geosynchronous IR data.J. Remote Sensing,11, (in press).Google Scholar
  2. Arkin, P. A., Meisner, B. N., 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–1984.Mon. Wea. Rev.,115, 51–74.Google Scholar
  3. Atlas, D., Thiele, O. (eds.), 1981: Precipitation Measurements from Space. Report on file at the TRMM Office of the Goddard Space Flight Center, Greenbelt, MD, 358 pp.Google Scholar
  4. Atlas, D., Rosenfeld, D., Short, D. A., 1990: The estimation of convective rainfall by area integrals, Part I: The theoretical and empirical basis.J. Geophys. Res.,95, 2153–2160.Google Scholar
  5. Bell, T. L., Abdullah, A., Martin, R. L., North, G. R., 1990: Sampling errors for satellite derived tropical rainfall: Monte Carlo study using a space-time stochastic model.J. Geophys. Res.,95D, 2195–2205.Google Scholar
  6. Cess, R. D., Zhang, M-H., Potter, G. L., Barker, H. W., Colman, R. A., Dazlich, D. A., Del Genio, A. D., Esch, M., Fraser, J. R., Galin, V., Gates, W. L., Hack, J. J., Ingram, W. J., Kiehl, J. T., Lacis, A. A., Le Treut, H., Liang, X.-Z., Mahfouf, J. F., MaAvaney, B., Meleshko, V. P., Morcrette, J.-J., Randall, D. A., Roeckner, E., Royer, J.-F., Sokolov, A. P., Sporyev, P. V., Taylor, K. E., Wang, W.-C., Wetherald, R. T., 1993: Uncertainties in carbon dioxide radiative forcing in atmospheric general circulation models.Science,262, 1252–1255.Google Scholar
  7. Greenstone, R., 1992: Bibliography of TRMM-related publications through 1991. On file at TRMM Office, Mail Code 910.1, Goddard Space Flight Center, NASA, Greenbelt, MD.Google Scholar
  8. Huffman, G. J., Adler, R. F., Rudolf, B., Schneider, U., Keehn, P. R., 1994: Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information.J. Climate (submitted).Google Scholar
  9. Kummerow, C., Mack, R. A., Hakkarinen, I. M., 1989: A self-consistency approach to improve microwave rainfall rate estimation from space.J. Appl. Meteor.,28, 869–884.Google Scholar
  10. Kummerow, C., Giglio, L., 1994a: A passive microwave technique for estimating rainfall and vertical structure information from space, Part I: Algorithm description.J. Appl. Meteor.,33, 3–18.Google Scholar
  11. Kummerow, C., Giglio, L., 1994b: A passive microwave technique for estimating rainfall and vertical structure information from space, Part II: Applications to CM/I data.J. Appl. Meteor.,33, 19–34.Google Scholar
  12. Riehl, H., 1954:Tropical Meteorology. New York: McGraw Hill. See especially Chaps. 3–5. 392 pp.Google Scholar
  13. Roberti, L., Haferman, J., Kummerow, C., 1994: Microwave radiative transfer through horizontally in homogeneous precipitating clouds.J. Geophys. Res.,99, 16707–16718.Google Scholar
  14. Rosenfeld, D., Atlas, D., Short, D., 1990: The estimation of convective rainfall by area integrals, Part II: The Height-Area Rainfall Threshold (HART) method.J. Geophys. Res.,95, 2161–2176.Google Scholar
  15. Rosenfeld, D., Gutman, G., 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data.Atmos. Res.,34, 259–283.Google Scholar
  16. Schols, J. L., Weinman, J. A., 1994: Retrieval of hydrometeor distributions over the ocean from airborne single-frequency radar and multi-frequency radiometric measurements.Atmos. Res.,34, 329–346.Google Scholar
  17. Seed, A., Austin, G. L., 1990: Variability of summer Florida rainfall and its significance for the estimation of rainfall by gages, radar and satellite.J. Geophys. Res.,95D, 2207–2215.Google Scholar
  18. Shin, K.-S., North, G. R., 1988: Sampling error study for rainfall estimate by satellite using a stochastic model.J. Appl. Meteor.,28, 1218–1231.Google Scholar
  19. Smith, E. A., Mugnai, A., Cooper, H. J., Tripoli, G. J., Xiang, X., 1992: Foundations for Statistical-physical precipitation retrieval from passive microwave satellite measurements. Part I: Brightness temperature properties of a time-dependent cloud-radiation model.J. Appl. Meteor.,31, 506–531.Google Scholar
  20. Smith, E. A., Kummerow, C., Mugnai, A., 1994: The emergence of inversion-type profile algorithms for estimation of precipitation from satellite passive microwave measurements.Remote Sensing Rev., (in press).Google Scholar
  21. Simpson, J., Tao, W.-K., 1993: The Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM.Terrestrial, Atmospheric and Oceanic Sciences,4, 73–116.Google Scholar
  22. Tao, W.-K., Simpson, J., 1993: The Goddard Cumulus Ensemble Model. Part I: Model description.Terrestrial, Atmospheric and Oceanic Sciences,4, 35–72.Google Scholar
  23. Tao, W.-K., Simpson, J., Lang, S., McCumber, M., Adler, R. F., Penc, R., 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles.J. Appl. Meteor.,29, 1232–1244.Google Scholar
  24. Tao, W.-K., Lang, S., Simpson, J., Adler, R. F., 1993: Retrieval Algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM.J. Meteor. Soc. Japan,71, 685–700.Google Scholar
  25. Tao, W.-K., Lang, S., Simpson, J., Adler, R. F., 1993: Retrieval algorithms for estimating the latent heat release: Their application for TRMM.J. Meteor. Soc. Japan,71, 685–700.Google Scholar
  26. Wang, Y., Pickering, K., Tao, W.-K., Adler, R. F., Thompson, A., Simpson, J., Lai, G., Keehn, P., 1994: Simulation of a south American Mesoscale Convective System.J. Geophys. Res., (submitted).Google Scholar
  27. Wilheit, T. T., Chang, A. T. C., Chiu, L. S., 1991: Retrieval of monthly rainfall indices from microwave radiometric measurements using probability density functions.J. Atmos. Oceanic Technol.,8, 118–136.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. Simpson
    • 1
  • C. Kummerow
    • 1
  • W. -K. Tao
    • 1
  • R. F. Adler
    • 1
  1. 1.Goddard Space Flight Center/ NASAGreenbeltUSA

Personalised recommendations