Theoretical and Mathematical Physics

, Volume 82, Issue 3, pp 225–230 | Cite as

Op* and C* dynamical systems. II. Structural differences: Borchers anomaly

  • A. V. Voronin
  • S. S. Khoruzhii


Dynamical System Structural Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. V. Voronin and S. S. Khoruzhii, Teor. Mat. Fiz.,82, 163 (1990).Google Scholar
  2. 2.
    H. J. Borchers and J. Yngvason, Commun. Math. Phys.,42, 231 (1975).Google Scholar
  3. 3.
    H. J. Borchers and J. Yngvason, Commun. Math. Phys.,43, 255 (1975).Google Scholar
  4. 4.
    J. Yngvason, Rep. Math. Phys.,13, 101 (1978).Google Scholar
  5. 5.
    W. Driessler and S. J. Summers, “On the decomposition of relativistic quantum field theories in pure phases,” Preprint, Universität Osnabrück (1985).Google Scholar
  6. 6.
    J. Fröhlich, Ann. Phys. (N.Y.),97, 1 (1976).Google Scholar
  7. 7.
    G. Epifanio and C. Trapani, J. Math. Phys.,25, 2633 (1984).Google Scholar
  8. 8.
    A. N. Vassilev, Commun. Math. Phys.,13, 81 (1969).Google Scholar
  9. 9.
    H. J. Borchers, Commun. Math. Phys.,1, 49 (1965).Google Scholar
  10. 10.
    S. S. Khoruzhii, Introduction to Algebraic Quantum Field Theory [in Russian], Nauka, Moscow (1986).Google Scholar
  11. 11.
    J. Dixmier, Les Algebres d'Operateurs dans l'Espace Hilbertien (Algebres de von Neumann), 2nd ed., Gauthier-Villars, Paris (1969).Google Scholar
  12. 12.
    A. N. Vasil'ev, Teor. Mat. Fiz.,1, 305 (1969).Google Scholar
  13. 13.
    R. T. Powers, Commun. Math. Phys.,21, 85 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • A. V. Voronin
  • S. S. Khoruzhii

There are no affiliations available

Personalised recommendations