Biotechnology Letters

, Volume 14, Issue 9, pp 857–862 | Cite as

Conversion of hydrolysates of corn cobs and hulls into ethanol by recombinantEscherichia coli B containing integrated genes for ethanol production

  • D. S. Belll
  • L. O. Ingram
  • A. Ben-Bassat
  • J. B. Doran
  • D. E. Fowler
  • R. G. Hall
  • B. E. Wood
Article

Summary

Hemicellulose and residual starch in corn hulls from wet milling and hemicellulose in corn cobs were hydrolyzed by incubation in dilute sulfuric acid at 140°C to 160°C. These hydrolysates were efficiently fermented to ethanol by a genetically engineered derivative ofE. coli B, strain KO11. Fermentation of com hull hydrolysate was complete after 48 h with a final ethanol concentration of 38 grams per liter. Fermentation of corn cob hydrolysate was essentially complete after 24 h due to a lower concentration of sugars and higher levels of inocula. In both cases, ethanol produced was equivalent to 100% of the maximum theoretical yield (0.51 grams ethanol/gram sugar) based on momoner sugar content. ThusE. coli B strain KO11 appears to be an excellent candidate for the efficient production of ethanol from hydrolysates of corn residues.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alterthum, F. and Ingram, L.O. (1989) Appl. Environ. Microbiol., 55, 1943–1948Google Scholar
  2. 2.
    Barbosa, M. de F.S., Beck, M.J., Fein, J.E., Potts, D., and Ingram, L.O. (1992) Appl. Environ. Microbiol., 58, 1382–1384.Google Scholar
  3. 3.
    Beall, D.S., Ohta, K. and Ingram, L.O. (1991). Biotechnol. Bioeng., 38, 296–303Google Scholar
  4. 4.
    Burchhardt, G. and Ingram, L.O. (1992). Appl. Environ. Microbiol., 58, 1128–1133Google Scholar
  5. 5.
    Grohman, K., Torget, R. and Himmel, M. (1986) Biotechnol. Bioeng. Symp., 17, 135–151Google Scholar
  6. 6.
    Ingram, L.O. and Conway, T. (1988) Appl. Environ. Microbiol., 54, 397–404.Google Scholar
  7. 7.
    Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W., and Preston, J.F. (1987) Appl. Environ. Microbiol., 53, 2420–2425Google Scholar
  8. 8.
    Ingram, L.O., Conway, T. and Alterthum, F. (1991) United States Patent 5,000,000Google Scholar
  9. 9.
    Lawford, H.G. and Rousseau, J.D. (1991). Biotechnol. Letts., 13, 1991–196Google Scholar
  10. 10.
    Lawford, H.G. and Rousseau, J.D. (1992) Biotechnol. Letts., 14, 421–426Google Scholar
  11. 11.
    Neale, A.D., Scopes, R.K. and Kelly, J.M. (1988). Appl. Microbiol. Biotechnol., 29, 162–167.Google Scholar
  12. 12.
    Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T. and Ingram, L.O. (1991a) Appl. Environ. Microbiol., 57, 893–900Google Scholar
  13. 13.
    Ohta, K., Beall, D.S., Mejia, J.P., Shanmugam, K.T. and Ingram, L.O. (1991b) Appl. Environ. Microbiol., 57, 2810–2815Google Scholar
  14. 14.
    Prior, B.A., Kilian, S.G. and ku Preez, J.C. (1989) Process Biochemistry, 24, 21–32Google Scholar
  15. 15.
    Torget, R., Walter, P., Himmel, M. and Grohman, K. (1991) Appl. Biochem. Biotechnol., 28/29, 75–86Google Scholar
  16. 16.
    Wood, B.E. and Ingram, L.O. (1992) Appl. Environ. Microbiol., 58, IN PRESSGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • D. S. Belll
    • 1
  • L. O. Ingram
    • 1
  • A. Ben-Bassat
    • 2
  • J. B. Doran
    • 2
  • D. E. Fowler
    • 2
  • R. G. Hall
    • 2
  • B. E. Wood
    • 2
  1. 1.Department of Microbiology and Cell ScienceUniversity of FloridaGainesville
  2. 2.Bioenergy International, L.C.Gainesville

Personalised recommendations