Theoretical and Mathematical Physics

, Volume 25, Issue 2, pp 1039–1049 | Cite as

Quantization of solitons

  • V. E. Korepin
  • L. D. Faddeev


We hope that we have succeeded in convincing the reader that this one-dimensional nonlinear model of field theory has a number of attractive properties. Let us list some of them.
  1. 1.

    The Lagrangian of the theory contains only one field, but a complete spectrum of particles is manifested. In the weak interaction approximation the solitons are heavy particles and they interact strongly.

  2. 2.

    The solitons have a quantum number which has a topological nature, and this can be interpreted as a charge. Solitons with the same charge repel each other, while solitons with different charge attract oacl other.

  3. 3.

    In the weak interaction approximation a prescription exists for calculating in perturbation theory. The quantum corrections are small for small coupling constants, and the quasiclassical treatment determines the entire nonanalytic contribution to the physical quantities.


The contents of this paper have been frequently discussed and corrected in collaboration with our colleagues I. Ya. Aref'evaya, P. P. Kulish, V. N. Popov, and L. A. Takhtadzhyan. We are very grateful to them. The paper was partly reworked after one of the authors (L. D. Faddeev) had been to the United States, where the paper was discussed with R. Dashen, R. Jackiw, S. Coleman, A. Neveu, and B. Hasslacher.


United States Soliton Field Theory Perturbation Theory Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. D. Faddeev and L. A. Takhtadzhyan, Usp. Mat. Nauk,29, 249 (1974).Google Scholar
  2. 2.
    V. E. Zakharov, L. A. Takhtadzhyan, and L.D. Faddeev, Dokl. Akad. Nauk SSSR,219, 1334 (1974).Google Scholar
  3. 3.
    L. A. Takhtadzhyan and L. D. Faddeev Teor. Mat. Fiz.,21, 160 (1974).Google Scholar
  4. 4.
    L. A. Takhtadzhyan, Zh. Eksp. Teor. Fiz.,66, 476 (1974).Google Scholar
  5. 5.
    L. D. Faddeev, Teor. Mat. Fiz.,1, 3 (1969).Google Scholar
  6. 6.
    L. D. Faddeev and V. S. Buslaev, Dokl. Akad. Nauk SSSR,132, 13 (1960).Google Scholar
  7. 7.
    I. Ya. Aref'eva and V. E. Korepin, Pis'ma Zh. Eksp. Teor. Fiz.,20, 680 (1974).Google Scholar
  8. 8.
    J. Goldstone and R. J. Jackiw, Preprint 443, Mass. Inst. Technol., Cambridge, Massachusetts (1974).Google Scholar
  9. 9.
    P. P. Kulish, IFVÉ, STF 74-155 [in Russian], Serpukhov (1974).Google Scholar
  10. 10.
    D. Finkelstein, J. Math. Phys.,7, 1216 (1966).Google Scholar
  11. 11.
    I. Ya. Aref'eva, A. A. Slavnov, and L. D. Faddeev, Teor. Mat. Fiz.,21, 311 (1974).Google Scholar
  12. 12.
    L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev.,101, 453 (1956).Google Scholar
  13. 13.
    S. Coleman, Preprint, Harvard University (1974).Google Scholar
  14. 14.
    L. D. Faddeev, Modern Problems of Mathematics, Vol. 3, VINITI, Moscow (1974).Google Scholar
  15. 15.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.,D 10, 4114, 4130 (1974).Google Scholar
  16. 16.
    V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz.,61, 118 (1971).Google Scholar
  17. 17.
    R. Jackiw, Preprint 453, Mass. Inst. Technol. Cambridge, Massachusetts (1974).Google Scholar
  18. 18.
    T. H. R. Skyrme, Proc. Roy. Soc.,A 262, 237 (1961).Google Scholar
  19. 19.
    V. E. Korepin, P. P. Kulish, and L. D. Faddeev, Pis'ma Zh. Eksp. Teor. Fiz.,21, 302 (1975).Google Scholar
  20. 20.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Preprint C002220-37, Princeton (1975).Google Scholar
  21. 21.
    V. E. Zakharov and S. V. Manakov, Teor. Mat. Fiz.,19, 332 (1974).Google Scholar
  22. 22.
    P. P. Kulish, S. V. Manakov, and L. D. Faddeev, Preprint ITF-17 [in Russian], Chernogolovka (1975).Google Scholar
  23. 23.
    R. Jackiw and G. Woo, Preprint 469, Mass. Inst. Technol., Cambridge, Massachusetts (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • V. E. Korepin
  • L. D. Faddeev

There are no affiliations available

Personalised recommendations