Advertisement

Theoretical and Mathematical Physics

, Volume 67, Issue 3, pp 586–596 | Cite as

Complete integrability of the nonlinear ito and Benney-Kaup systems: Gradient algorithm and lax representation

  • N. N. BogolyubovJr
  • A. K. Prikarpatskii
Article

Keywords

Gradient Algorithm Complete Integrability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    M. Ito, Phys. Lett. A,91, 335 (1982).Google Scholar
  2. 2.
    N. Kh. Ibragimov, Transformation Lie Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  3. 3.
    B. Fucssteiner and A. S. Fokas, Physica (Utrecht) D,4, 47 (1981).Google Scholar
  4. 4.
    V. E. Zakharov and L. D. Faddeev, Funktsional. Analiz i Ego Prilozhen.,5, 18 (1971).Google Scholar
  5. 5.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, The Theory of Solitons (Inverse Scattering Method) [in Russian], Nauka, Moscow (1980).Google Scholar
  6. 6.
    A. I. Skripnik, A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR, Ser. A, No. 5, 21 (1985).Google Scholar
  7. 7.
    N. N. Bogolyubov (Jr), A. M. Kurbatov, A. K. Prikarpatskii, and V. G. Samoilenko, Teor. Mat. Fiz.,65, 271 (1985).Google Scholar
  8. 8.
    P. D. Lax, Commun. Pure Appl. Math.,28, 141 (1975).Google Scholar
  9. 9.
    Yu. A. Mitropol'skii, A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR,287, 205 (1986).Google Scholar
  10. 10.
    F. Magri, J. Math. Phys.,19, 1156 (1978).Google Scholar
  11. 11.
    V. I. Arnol'd, Mathematical Methods of Classical Mechanics (Graduate Texts in Mathematics, Vol. 60), Springer, New York (1978).Google Scholar
  12. 12.
    V. G. Samoilenko and A. K. Prikarpatskii, Dokl. Akad. Nauk SSSR, Ser. A, No. 3, 22 (1984).Google Scholar
  13. 13.
    E. V. Doctorov, J. Phys. A,13, 3599 (1980).Google Scholar
  14. 14.
    Yu. A. Mitropol'skii, A. K. Prikarpatskii, and V. G. Samoilenko, Ukr. Mat. Zh.,36, 451 (1984).Google Scholar
  15. 15.
    G.-Zh. Tu, Nuovo Cimento B,73, 15 (1983).Google Scholar
  16. 16.
    N. N. Bogolyubov (Jr), A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR,976, 1225 (1985).Google Scholar
  17. 17.
    N. N. Bogolyubov (Jr), A. K. Prikarpatskii, and V. G. Samoilenko, Dokl. Akad. Nauk SSSR, Ser. A, No. 10, 51 (1984).Google Scholar
  18. 18.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1980).Google Scholar
  19. 19.
    S.-S. Chern, Complex Manifolds without Potential Theory, Van Nostrand, Princeton (1967).Google Scholar
  20. 20.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, Interscience, New York (1963).Google Scholar
  21. 21.
    B. A. Kupershmidt, Commun. Math. Phys.,99, 51 (1985).Google Scholar
  22. 22.
    V. B. Natveev and M. I. Yavor, Ann. Inst. Henri Poincaré, Ser. A,31, 25 (1979).Google Scholar
  23. 23.
    M. Adler, Inv. Math.,50, 219 (1979).Google Scholar
  24. 24.
    A. K. Prikarpatskii, Teor. Mat. Fiz.,46, 382 (1981).Google Scholar
  25. 25.
    B. A. Dubrovin, S. P. Novikov, and V. B. Matveev, Usp. Mat. Nauk,31, 55 (1979).Google Scholar
  26. 26.
    M. Boiti, J. J.-P. Leon, and F. Pempinelli, J. Math. Phys.,25, 1725 (1984).Google Scholar
  27. 27.
    A. K. Prikarpatskii, Dokl. Akad. Nauk SSSR,253, 298 (1980).Google Scholar
  28. 28.
    N. N. Bogolyubov (Jr) and A. K. Prikarpatskii, “Application of methods of algebraic geometry,” in: Mathematical Methods and Physicochemical Fields [in Russian], Naukova Dumka, Kiev (1983). Vol. 17, pp. 5–11, Vol. 18, pp. 5–9.Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • N. N. BogolyubovJr
  • A. K. Prikarpatskii

There are no affiliations available

Personalised recommendations