Theoretical and Mathematical Physics

, Volume 59, Issue 1, pp 317–335 | Cite as


I. Differential calculus
  • V. S. Vladimirov
  • I. V. Volovich


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    N. N. Dogolyubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory, Benjamin, New York (1975).Google Scholar
  2. 2.
    R. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That, Benjamin, New York (1964).Google Scholar
  3. 3.
    R. Jost, The General Theory of Quantized Fields, AMS, Providence, R.I. (1965).Google Scholar
  4. 4.
    V. S. Vladimirov, Methods of the Theory of Functions of Many Complex Variables, M.I.T. Press, Cambr., Mass. (1966).Google Scholar
  5. 5.
    Twistors and Gauge Fields (Collection of Papers by R. Penrose and others; Russian translations), Mir, Moscow (1983).Google Scholar
  6. 6.
    M. F. Atiyah, “Geometry of Yang-Mills fields,” Preprint, Pisa (1979).Google Scholar
  7. 7.
    E. Witten, Phys. Lett. B,77, 394 (1978).Google Scholar
  8. 8.
    I. V. Volovich, Teor. Mat. Fiz.,54, 89 (1983);55, 39 (1983).Google Scholar
  9. 9.
    V. I. Ogievetskii and L. Mezincescu, Usp. Fiz. Nauk,117, 637 (1975).Google Scholar
  10. 10.
    A. A. Slavnov, Usp. Fiz. Nauk,124, 487 (1978).Google Scholar
  11. 11.
    P. Van Nieuwenhuizen, Phys. Rep.,68, 189 (1981).Google Scholar
  12. 12.
    Superspace and Supergravity (eds. S. W. Hawking and M. Rocek), Cambridge University Press, Cambridge (1981); B. Zumino, “Supersymmetry and supergravity,” UC Berkeley Report No. UCB-PTH-83/2 (1983).Google Scholar
  13. 13.
    A. Salam and J. Strathdee, Nucl. Phys. B,71, 51 (1974).Google Scholar
  14. 14.
    Yu. A. Gol'fand and E. P. Likhtman, Pis'ma Zh. Eksp. Teor. Fiz.,13, 452 (1971).Google Scholar
  15. 15.
    D. V. Volkov and V. P. Akulov, Pis'ma Zh. Eksp. Teor. Fiz.,16, 621 (1972).Google Scholar
  16. 16.
    J. Wess and B. Zumino, Nucl. Phys. B,70, 39 (1974).Google Scholar
  17. 17.
    J. Schwinger, Theory of Quantized Fields [Russian translation], IL. (1956); N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience (1959); F. A. Berezin, The Method of Second Quantization, New York (1966).Google Scholar
  18. 18.
    Yu. V. Novozhilov and A. V. Tulub, Usp. Fiz. Nauk,61, 53 (1957).Google Scholar
  19. 19.
    I. L. Martin, Proc. R. Soc. London, Ser. A,251, 536, 543 (1959).Google Scholar
  20. 20.
    I. V. Volovich, Dokl. Akad. Nauk SSSR,269, 524 (1983).Google Scholar
  21. 21.
    V. S. Vladimirov and I. V. Volovich, Dokl. Akad. Nauk SSSR,273, 26 (1983).Google Scholar
  22. 22.
    A. Rogers, J. Math. Phys.,21, 1352 (1980).Google Scholar
  23. 23.
    A. Jadczyk and K. Pilch, Commun. Math. Phys.,78, 373 (1981).Google Scholar
  24. 24.
    J. Hoyos, M. Quirós, J. Ramírez Mittelbrunn, and F. J. Urríes, J. Math. Phys.,23, 1504 (1982).Google Scholar
  25. 25.
    G. Scheffers, Der. Verhandl. Sächsisch. Acad. Wiss. Leipzig, Math. Phys. Kl.,45, 828 (1893);46, 120 (1894).Google Scholar
  26. 26.
    P. W. Ketchum, Trans. Am. Math. Soc.,30, 641 (1928).Google Scholar
  27. 27.
    E. R. Lorch, Trans. Am. Math. Soc.,54, 414 (1943).Google Scholar
  28. 28.
    E. K. Blum, Trans. Am. Math. Soc.,78, 343 (1955).Google Scholar
  29. 29.
    N. M. Krylov, Dokl. Akad. Nauk SSSR,60, 687 (1947).Google Scholar
  30. 30.
    J. A. Ward, J. Duke Math.,7, 233 (1940).Google Scholar
  31. 31.
    V. S. Fedorov, Mat. Sb.,18, 352 (1946).Google Scholar
  32. 32.
    I. M. Gel'fand, D. A. Raikov, and G. E. Shilov, Commutative Normed Rings [in Russian], Fizmatgiz, Moscow (1960).Google Scholar
  33. 33.
    V. M. Maksimov, Dokl. Akad. Nauk SSSR,267, 48 (1982).Google Scholar
  34. 34.
    F. A. Berezin, Introduction to Algebra and Analysis with Noncommuting Variables [in Russian], Moscow State University, Moscow (1983).Google Scholar
  35. 35.
    D. A. Leites, Usp. Mat. Nauk,35, 3 (1980).Google Scholar
  36. 36.
    B. Kostant, Lect. Notes Math., No. 570, 177 (1977).Google Scholar
  37. 37.
    F. A. Berezin and G. I. Kats, Mat. Sb.,3, 343 (1970).Google Scholar
  38. 38.
    A. S. Schwarz, Commun. Math. Phys.,87, 37 (1982).Google Scholar
  39. 39.
    A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  40. 40.
    G. E. Shilov, Mathematical Analysis. Functions of Several Real Variables [in Russian], Nauka, Moscow (1972).Google Scholar
  41. 41.
    J. Dieudonné, Foundations of Modern Analysis, New York (1960).Google Scholar
  42. 42.
    É. Cartan, Differential Calculus. Differential Forms [Russian translation], Mir, Moscow (1971).Google Scholar
  43. 43.
    L. Schwartz, Analysis, Vols. 1 and 2 [Russian translation], Mir, Moscow (1972).Google Scholar
  44. 44.
    S. Lang, Differentiable Manifolds [Russian translation], IL., Moscow (1967).Google Scholar
  45. 45.
    N. Bourbaki, Differentiable and Analytic Manifolds. Summary of Results [Russian translation], Mir, Moscow (1975).Google Scholar
  46. 46.
    A. I. Kostrikin and Yu. I. Manin, Linear Algebra and Geometry [in Russian], Moscow State University, Moscow (1980).Google Scholar
  47. 47.
    N. M. Krylov, Dokl. Akad. Nauk SSSR,60, 799 (1947).Google Scholar
  48. 48.
    F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Pitnam Publishing Inc., Boston (1982).Google Scholar
  49. 49.
    K. Yosida, Functional Analysis, Springer, Berlin (1965).Google Scholar
  50. 50.
    J. Mikusinski, The Bochner Integral, Birkhäuser Verlag, Basel (1978).Google Scholar
  51. 51.
    N. Bourbaki, Integration [Russian translation], Nauka, Moscow (1977).Google Scholar
  52. 52.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics [in Russian], Nauka, Moscow (1979).Google Scholar
  53. 53.
    G. I. Kats and A. I. Koronkevich, Funktsional. Analiz i Ego Prilozhen.,5, 78 (1971).Google Scholar
  54. 54.
    Z. I. Borevich and I. R. Shafarevich, Theory of Numbers [in Russian], Nauka, Moscow (1972).Google Scholar
  55. 55.
    J. P. Serre, Lie Algebras and Lie Groups, Benjamin (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. S. Vladimirov
  • I. V. Volovich

There are no affiliations available

Personalised recommendations