Advertisement

Journal of Materials Science

, Volume 14, Issue 1, pp 151–158 | Cite as

What does the pendulum hardness test measure?

  • P. G. Fox
  • I. B. Freeman
Papers

Abstract

Various modes of energy absorption are considered as possible explanations for pendulum attenuation in the dynamic hardness testing of soda lime silica glass. It is concluded that the test gives little direct information about fracture processes, the major part of the energy absorption being accounted for by plastic flow in the solid as in the case of static hardness measurements. However, it is proposed that the effects of aqueous environments (which may be produced catalytically at the crack tip) can be observed by their effects on the yield stress and the onset of cracking of the glass.

Keywords

Attenuation Lime Energy Absorption Plastic Flow Fracture Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. D. Kuznetsov, “Surface energy of solids” (HMSO, London, 1957) p. 74.Google Scholar
  2. 2.
    I. B. Freiman, Ph.D. thesis, University of Sussex (1975).Google Scholar
  3. 3.
    P. A. Rebinder, L. A. Schreiner andK. F. Zhigach, “Hardness reducers in rock drilling” (CSIRO, Melbourne, Australia, 1948).Google Scholar
  4. 4.
    A. R. C. Westwood,J. Mater. Sci. 9 (1974) 1871.Google Scholar
  5. 5.
    V. D. Kuznetsov, “Surface energy of solids” (HMSO, London, 1957) p. 74.Google Scholar
  6. 6.
    O. Terichow andW. C. Larsen, US Dept. of Interior (USBM Report No. 6952, Washington, 1967).Google Scholar
  7. 7.
    A. R. C. Westwood andN. H. Macmillan, “Science of hardness testing” (ASM, Metals Park, Ohio, 1973) p.377.Google Scholar
  8. 8.
    K. L. Johnson, J. J. Connor andA. C. Woodward,Proc. Roy. Soc. A334 (1973) 95.Google Scholar
  9. 9.
    K. R. Linger andD. G. Holloway,Phil Mag. 18 (1968) 1269.Google Scholar
  10. 10.
    H. Schultze andG. Gliemeroth,Glastech. Ber. 39 (1966) 279.Google Scholar
  11. 11.
    A. H. Cottrell, “The mechanical properties of matter” (John Wiley, London, 1964) Ch. 7.Google Scholar
  12. 12.
    B. V. Deraguin andS. Krylov,Akad. Nauk. SSSR Otdel. Tekh. Nauk. Rastoorov 2 (1944) 52.Google Scholar
  13. 13.
    S. Levine, J. R. Marriott andK. Robinson,J. Chem. Soc., Faraday I,1 (1975) 1.Google Scholar
  14. 14.
    J. W. Obreimov,Proc. Roy. Soc. A127 (1930) 290.Google Scholar
  15. 15.
    H. Deuel andR. Gentil,Helv. Chim. Acta 39 (1956) 1586.Google Scholar
  16. 16.
    R. A. Benson andJ. E. Castle,J. Phys. Chem 62 (1958) 840.Google Scholar
  17. 17.
    S. M. Weiderhorn,J. Amer. Ceram. Soc. 55 (1972) 81.Google Scholar
  18. 18.
    A. R. C. Westwood and R. D.Huntingdon, Proceedings of the 1971 International Conference of Mechanical Behaviour of Materials IV (1972) 383.Google Scholar
  19. 19.
    S. W. Freiman,J. Amer. Ceram. Soc. 57 (1974) 350.Google Scholar
  20. 20.
    Idem, ibid. 58 (1975) 339, 340.Google Scholar
  21. 21.
    A. G. Evans andT. R. Wilshaw,Acta. Met. 24 (1976) 939.Google Scholar
  22. 22.
    R. S. Heins andN. Street,Soc. Pet. Eng. J. 5 (1965) 177.Google Scholar
  23. 23.
    C. M. Perrott,Wear 45 (1977) 293.Google Scholar
  24. 24.
    D. M. Marsh,Proc. Roy. Soc. A279 (1964) 420.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • P. G. Fox
    • 1
  • I. B. Freeman
    • 1
  1. 1.Department of Metallurgy and Materials ScienceNottingham UniversityNottinghamUK

Personalised recommendations