Advertisement

Journal of Materials Science

, Volume 14, Issue 1, pp 1–18 | Cite as

Liquid metal embrittlement

  • M. G. Nicholas
  • C. F. Old
Review

Abstract

Liquid metal embrittlement is the reduction in the elongation to failure that can be produced when normally ductile solid metals are stressed while in contact with a liquid metal. This review describes its principal characteristics and the several models which have been advanced in attempts to explain the occurrence and different features of the process. Comparison between theory and experiment indicates that many, but not all, of its aspects are consistent with a mechanism which operates by reducing the fracture surface energy of the solid metal. Literature reports show that liquid metal embrittlement can occur with a very wide range of material combinations, and while most of the data refer to laboratory studies, it is clear that the phenomenon is also of technological significance as a potential cause of plant damage.

Keywords

Polymer Surface Energy Fracture Surface Laboratory Study Liquid Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. C. Westwood, C. M. Preece andM. H. Kamdar, “Fracture” Vol. 3, edited by H. Leibowitz (Academic Press, London, 1971) p. 589.Google Scholar
  2. 2.
    A. K. Huntington,J. Inst. Met. 11 (1914) 108.Google Scholar
  3. 3.
    V. W. Eldred, AERE X/R 1806 (1955).Google Scholar
  4. 4.
    W. Rostoker, J. M. McCaughey andH. Markus, “Embrittlement of liquid metals” (Rheinhold, New York, 1960).Google Scholar
  5. 5.
    N. S. Stoloff, “Surfaces and Interfaces”, Vol. II, edited by J. J. Burkeet al. (Syracuse Univ. Press, 1968) p. 157.Google Scholar
  6. 6.
    M. H. Kamdar,Progr. Mater. Sci. 15 (1973) 289.Google Scholar
  7. 7.
    The Observer, Oct. 10th (1976).Google Scholar
  8. 8.
    “The Flixborough Disaster”, Report of the Court of Inquiry (HMSO, London, 1975).Google Scholar
  9. 9.
    L. S. Bryukhanova, J. A. Andreeva andV. I. Likhtman,Sov. Phys. Solid State 3 (1962) 2025.Google Scholar
  10. 10.
    C. M. Preece andA. R. C. Westwood, Proceedings of the 2nd International Conference on Fracture, edited by P. L. Pratt, (Chapman and Hall, London, 1969) p. 439.Google Scholar
  11. 11.
    N. M. Parikh, Conference on Environment Sensitive Mechanical Behaviour, edited by A. R. C. Westwood and N. S. Stoloff, (Gordon and Breach, New York, 1966) p. 563.Google Scholar
  12. 12.
    M. Tanaka andH. Fukanaga, Proceedings of the 12th Japanese Congress on Materials Research (Kyoto, 1969) p. 248.Google Scholar
  13. 13.
    N. S. Stoloff andT. L. Johnston,Acta. Met. 11 (1963) 251.Google Scholar
  14. 14.
    G. Herbsleb andW. Schwenk,Werkstoffe und Korrosion 28 (1977) 145.Google Scholar
  15. 15.
    P. Hancock andM. B. Ives,Can. Met. Qtly. 10 (1971) 203.Google Scholar
  16. 16.
    C. Roques-Carmes, M. Aucouturier andP. Lacombe,Can. Met. Qtly. 13 (1974) 115.Google Scholar
  17. 17.
    R. J. H. Wanhill,Corrosion-N.A.C.E. 30 (1974) 371.Google Scholar
  18. 18.
    W. T. Grubb,Nature 265 (1977) 36.Google Scholar
  19. 19.
    M. J. Blackburn, J. A. Feeney andT. R. Beck, “Advances in Corrosion Science and Technology”, Vol. 3, edited by M. G. Fontana and R. W. Staehle (Plenum Press, New York, 1973) p. 67.Google Scholar
  20. 20.
    A. H. Maitland andG. A. Chadwick,Phil. Mag. 19 (1969) 1305.Google Scholar
  21. 21.
    V. I. Likhtman, L. A. Kochanova andL. S. Bryukhanova,Sov. Phys. Dokl. 3 (1958) 599.Google Scholar
  22. 22.
    A. R. C. Westwood, C. M. Preece andM. H. Kamdar,Trans. ASM 60 (1967) 723.Google Scholar
  23. 23.
    M. H. Kamdar andA. R. C. Westwood,Phil. Mag. 15 (1967) 641.Google Scholar
  24. 24.
    W. Barclay andF. N. Rhines, unpublished work quoted in [4]“, p. 44.Google Scholar
  25. 25.
    C. F. Old, 4th International Conference on Fracture (University of Waterloo Press, 1977) p. 331.Google Scholar
  26. 26.
    H. Nichols andW. Rostoker,Acta Met. 8 (1960) 848.Google Scholar
  27. 27.
    C. F. Old andP. Trevena, AERE-R9226 (1978).Google Scholar
  28. 28.
    J. C. Lynn, W. R. Warke andP. Gordon,Mater. Sci. Eng. 18 (1975) 51.Google Scholar
  29. 29.
    F. A. Shunk, Ph. D. Thesis, I. I. T., (1969),Diss. Abs. B37 (1976).Google Scholar
  30. 30.
    H. Ichinose andG. Oouchi,Trans. Jap. Inst. Met. 9 (supplement) (1968) 980.Google Scholar
  31. 31.
    W. M. Robertson,Met. Trans. 1 (1970) 2607.Google Scholar
  32. 32.
    J. V. Rinnovatore, J. V. Corrie andH. Markus,Trans. ASM 59 (1966) 665.Google Scholar
  33. 33.
    W. R. Warke, 3rd Progress Report, Project Themis, AD 708377.Google Scholar
  34. 34.
    D. N. Fager andW. F. Spurr,Corrosion-N.A.C.E. 27 (1971) 72.Google Scholar
  35. 35.
    Idem, ibid. 26 (1970) 409.Google Scholar
  36. 36.
    D. A. Meyn,ibid. 29 (1973) 192.Google Scholar
  37. 37.
    Aluminium Development Association,Metallurgia 42 (1950) 131.Google Scholar
  38. 38.
    N. S. Stoloff, R. G. Davies andT. L. Johnston, Conference on Environment Sensitive Mechanical Behaviour, edited by A. R. C. Westwood and N. S. Stoloff, (Gordon and Breach, New York, 1966) p. 613.Google Scholar
  39. 39.
    R. Rosenberg andP. Cadoff, “Fracture of Solids”, edited D. C. Drucker and J. J. Gilman (Interscience, New York, 1963) p. 607.Google Scholar
  40. 40.
    H. Ichinose andG. Oouchi,Trans. Jap. Inst. Met. 10 (1969) 178.Google Scholar
  41. 41.
    H. Nichols andW. Rostoker,Trans. ASM 56 (1963) 494.Google Scholar
  42. 42.
    M. Watkins, L. Johnson andN. N. Breyer, 4th Interamerican Conference on Materials Technology (Caracas, 1975) p. 31.Google Scholar
  43. 43.
    L. P. Costas,Corrosion-N.A.C.E. 31 (1975) 91.Google Scholar
  44. 44.
    S. Dinda, andW. R. Warke,Mater. Sci. Eng. 24 (1976) 199.Google Scholar
  45. 45.
    C. M. Preece,Res. Dev. 23 (1972) 30.Google Scholar
  46. 46.
    H. Nichols andW. Rostoker,Trans. AIME 224 (1962) 1258.Google Scholar
  47. 47.
    M. D. Chadwick, R. B. Gibbon andD. Howel, IRD-64-55 and IRD-65-57.Google Scholar
  48. 48.
    W. R. Goggin andJ. W. Moberly,Trans. ASM Qtly. 59 (1966) 315.Google Scholar
  49. 49.
    M. Aucouturier, P. Lacombe andC. Roquescarmes,Compt. Rendus 270C (1970) 469.Google Scholar
  50. 50.
    Idem, Mem. Sci. Rev. Met. 67 (1970) 367.Google Scholar
  51. 51.
    C. Brichet, L. Peeters, C. Roques-Carmes andG. Wyon,Compt. Rendus 271C (1970) 617.Google Scholar
  52. 52.
    L. Peeters, C. Roques-Carmes, M. Aucouturier andG. Wyon,Mem. Sci. Rev. Met. 69 (1972) 81.Google Scholar
  53. 53.
    D. J. Goddard andJ. A. Williams,J. Inst. Met. 99 (1971) 323.Google Scholar
  54. 54.
    K. J. Goddard andC. A. P. Horton,Metallography 6 (1973) 131.Google Scholar
  55. 55.
    C. Roques-Carmes, M. Aucouturier andP. Lacombe,Metal Sci. 7 (1973) 128.Google Scholar
  56. 56.
    S. K. Marya andG. Wyon,Scripta Met. 9 (1975) 1009.Google Scholar
  57. 57.
    Idem, Metallography 9 (1976) 123.Google Scholar
  58. 58.
    C. F. Old, AERE-R8343 (1976).Google Scholar
  59. 59.
    F. N. Rhines, J. A. Alexander andW. F. Barclay,Trans. ASM 55 (1962) 22.Google Scholar
  60. 60.
    W. Rostoker, Armour Research Foundation Report B183 (1963).Google Scholar
  61. 61.
    H. Ichinose,Trans. Jap. Inst. Met. 9 (1968) 35.Google Scholar
  62. 62.
    M. J. Malm andC. M. Preece,Mater. Sci. Eng. 11 (1973) 223.Google Scholar
  63. 63.
    G. Wesley-Austin,J. Inst. Met. 58 (1936) 173.Google Scholar
  64. 64.
    W. R. Smith andP. E. J. Forsyth,Metallurgia 34 (1946) 186, 245.Google Scholar
  65. 65.
    Y. M. Potak andI. M. Shchlegakov,Zhur Tekh Fiz 25 (1955) 897.Google Scholar
  66. 66.
    N. V. Pertsov andP. A. Rebinder,Dokl. Akad. Nauk USSR 123 (1958) 1068.Google Scholar
  67. 67.
    P. D. Novokreshehenov andN. V. Savchenko,Dokl Akad Nauk, Tekh Fiz 148 (1963) 328.Google Scholar
  68. 68.
    R. W. Vook, Conference on Environment Sensitive Mechanical Behaviour, edited by A. R. C. Westwood and N. S. Stoloff (Gordon and Breach, New York, 1966) p. 657.Google Scholar
  69. 69.
    R. Chadwick,J. Inst. Met. 97 (1969) 93.Google Scholar
  70. 70.
    K. Nagata andS. Seto, Sumitomo Light Metal Technical Reports,10 (1969) 21.Google Scholar
  71. 71.
    M. M. Shea andN. S. Stoloff,Mater. Sci. Eng. 12 (1973) 245.Google Scholar
  72. 72.
    R. Eborall andP. Gregory,J. Inst. Met. 84 (1955–6) 88.Google Scholar
  73. 73.
    W. H. Bassett,Proc. ASTM 18 (1918) 153.Google Scholar
  74. 74.
    C. H. Desch,J. Inst. Met. 22 (1919) 247.Google Scholar
  75. 75.
    H. Moore andS. Beckinsale,J. Inst. Met. 23 (1920) 225.Google Scholar
  76. 76.
    H. Moore, S. Beckinsale andC. E. Malinson,ibid. 25 (1921) 33.Google Scholar
  77. 77.
    D. Crampton,Trans. AIME 89 (1930) 23.Google Scholar
  78. 78.
    W. Lynes,Proc. ASTM 41 (1941) 859.Google Scholar
  79. 79.
    T. C. Wilson, G. Edmunds, E. A. Anderson andW. H. Pierce, Symposium on Stress Corrosion Cracking (ASTM-AIME, Philadelphia, 1944) 173.Google Scholar
  80. 80.
    W. D. Robertson,J. Metals (1951) 1190.Google Scholar
  81. 81.
    W. D. Martin and G. C.Smith, private communication.Google Scholar
  82. 82.
    T. L. Johnston, R. G. Davies andN. S. Stoloff,Phil. Mag. 12 (1965) 305.Google Scholar
  83. 83.
    G. Edmunds, Symposium on stress corrosion cracking of metals (ASTM-AIME, Philadelphia, 1944) p. 67.Google Scholar
  84. 84.
    I. B. Cadoff, E. Levine andH. T. Michels,Met. Trans. 3 (1972) 2139.Google Scholar
  85. 85.
    S. Seelinger andN. S. Stoloff, “In-situ composites”, Vol. II (Gordon and Breach, New York, 1973) p. 223.Google Scholar
  86. 86.
    T. M. Regan andN. S. Stoloff,Met. Trans. 8A (1977) 885.Google Scholar
  87. 87.
    J. H. S. Dickinson,J. Inst. Met. 24 (1920) 315.Google Scholar
  88. 88.
    H. J. Miller,ibid. 37 (1927) 183.Google Scholar
  89. 89.
    M. E. Whittaker,Metallurgia 39 (1948) 21.Google Scholar
  90. 90.
    V. I. Likhtman, E. D. Shchukin andP. A. Rebinder, “Physico-Chemical Mechanics of Metals” (Acad. Sci. USSR, Moscow, 1962).Google Scholar
  91. 91.
    H. F. Hartley,J. Inst. Met. 37 (1962) 193.Google Scholar
  92. 92.
    B. D. Summ,Phys. Metals Metallog. 14 (1963) 104.Google Scholar
  93. 93.
    N. I. Flegontova, B. D. Summ andYú V. Goryunov,ibid. 18 (1964) 85.Google Scholar
  94. 94.
    M. H. Kamdar andA. R. C. Westwood, US Government Research Reports40 (1965) AD 613701.Google Scholar
  95. 95.
    V. Y. Traskin,Fiz Khim Mekh Met 1 (1965) 645.Google Scholar
  96. 96.
    C. F. Old andP. Trevena, AERE-R8311 (1976).Google Scholar
  97. 97.
    F. A. Shunk andW. R. Warke,Scripta Met. 8 (1974) 519.Google Scholar
  98. 98.
    V. N. Rozhanski, N. V. Pertsov, E. D. Shchukin andP. A. Rebinder,Dokl Akad Nauk USSR 116 (1957) 769.Google Scholar
  99. 99.
    G. S. Knishnik,Nauk Tr. Vses Zaoch Mashinostroit Inst. 12 (1975) 79.Google Scholar
  100. 100.
    E. D. Shchukin andV. I. Likhtman,Sov. Phys. Dokl 4 (1959) 111.Google Scholar
  101. 101.
    Yú V. Goryunova,Dokl Akad Nauk USSR 153 (1963) 634.Google Scholar
  102. 102.
    L. A. Kochanova, “The role of surface phenomena in metallurgy”, (Moscow Univ., 1963) p. 129.Google Scholar
  103. 103.
    A. R. C. Westwood andM. H. Kamdar,Phil. Mag. 8 (1963) 787.Google Scholar
  104. 104.
    A. R. C. Westwood,ibid. 9 (1964) 199.Google Scholar
  105. 105.
    B. D. Summ, L. V. Ivanova andYú V. Goryunova,Fiz. Khim Mekhan Mat. 1 (1965) 648.Google Scholar
  106. 106.
    M. H. Kamdar andA. R. C. Westwood, “Environment Sensitive Mechanical Behaviour” (Gordon and Breach, New York, 1966) p. 581.Google Scholar
  107. 107.
    A. R. C. Westwood, “Strengthening mechanisms—metal and ceramics” (Syracuse University Press, 1966) p. 407.Google Scholar
  108. 108.
    M. H. Kamdar andA. R. C. Westwood, International Conference on Strengths of Metals and Alloys (Jap. Inst. Metals, Sendai, 1968) p. 525.Google Scholar
  109. 109.
    Idem, US Government Research Reports68 (1968) AD 66866.Google Scholar
  110. 110.
    Idem, Acta. Met. 16 (1968) 1335.Google Scholar
  111. 111.
    A. H. Maitland andG. A. Chadwick,Phil. Mag. 19 (1969) 645.Google Scholar
  112. 112.
    M. H. Kamdar,Met. Trans. 2 (1971) 2937.Google Scholar
  113. 113.
    G. I. Denshehikova, Yú V. Goryunova, L. S. Soldatchenkova andB. D. Summ,Fiz. Khim Mekhan Mat. 11 (1975) 5.Google Scholar
  114. 114.
    N. J. E. Gunn, C. A. Stubbington andJ. T. Barlett, R. A. E. Tech. Memo Mat 233 (1975).Google Scholar
  115. 115.
    W. T. Grubb andM. H. Morgan III, American Nuclear Society Topical Meeting on Reactor Fuel Performance (1977).Google Scholar
  116. 116.
    E. G. Coleman, D. Weinstein andW. Rostoker,Acta, Met. 9 (1961) 491.Google Scholar
  117. 117.
    M. Tanaka andH. Fukunaga,J. Soc. Mater. Sci. (Jap.) 18 (1969) 411.Google Scholar
  118. 118.
    J. E. Cordwell, Proceedings of International Congress organised by the British Nuclear Energy Society, Nottingham (British Nuclear Energy Society, London, 1973) p. 177.Google Scholar
  119. 119.
    H. Schottky, K. Schiektel andR. Stolle,Arch Eisenhutten. 4 (1931) 541.Google Scholar
  120. 120.
    E. M. Kennedy Jr, Wadc TR 58–108 (1958) Astia 151075.Google Scholar
  121. 121.
    A. Kelly, W. R. Tyson andA. H. Cottrell,Phil. Mag. 15 (1967) 567.Google Scholar
  122. 122.
    J. F. Hildebrand,Mater Protection and Performance 12 (1973) 35.Google Scholar
  123. 123.
    W. Radeker,Werkstoffe und Korrosion 24 (1973) 851.Google Scholar
  124. 124.
    J. C. Lynn, Ph. D. Thesis, I.I.T. (1974).Google Scholar
  125. 125.
    N. N. Breyer andK. L. Johnson,J. Testing and Evaluation 2 (1974) 471.Google Scholar
  126. 126.
    S. M. Baranov andS. I. Karatushkin,Soviet Mater. Sci. 3 (1967) 101.Google Scholar
  127. 127.
    W. Herrnkind, 3rd International Conference on Lead (Venice, 1968) 387.Google Scholar
  128. 128.
    W. Warke, K. L. Johnson ANDN. N. Breyer, “Corrosion by liquid metals” (Plenum Press, New York, 1970) p. 417.Google Scholar
  129. 129.
    W. Warke andN. N. Breyer,J. Iron Steel Inst. (1971) 779.Google Scholar
  130. 130.
    H. W. Hayden andS. Floreen,Phil. Mag. 20 (1969) 135.Google Scholar
  131. 131.
    L. J. G. vanEwijk,J. Inst. Met. 56 (1935) 241.Google Scholar
  132. 132.
    W. E. Goodrich,J. Iron Steel Inst. 132 (1935) 63.Google Scholar
  133. 133.
    M. S. Wang, M. Sc. Thesis, Leeds (1943).Google Scholar
  134. 134.
    R. Genders,J. Inst. Met. 37 (1927) 215.Google Scholar
  135. 135.
    G. F. Kosogov andV. I. Likhtman,Soviet Phys. Dokl. 5 (1960) 1054.Google Scholar
  136. 136.
    F. Page,Proc. Amer. Electroplaters Soc. (1943) 51.Google Scholar
  137. 137.
    W. Radecker,Stahl und Eisen 73 (1973) 654.Google Scholar
  138. 138.
    M. Andreani, P. Azou andP. Bastien,C. R. Acad. Sci. Paris 263C (1966) 1041.Google Scholar
  139. 139.
    M. Andreani, P. Azou andO. Bastien,Mem. Sci. Rev. Met. 66 (1969) 21.Google Scholar
  140. 140.
    J. E. Cantwell andR. E. Bryant, Hydrocarbon Processing, May (1973) p. 114.Google Scholar
  141. 141.
    A. H. Cottrell andP. R. Swann,Chem. Eng. (London) (1976) 266.Google Scholar
  142. 142.
    V. L. Kolmogorov, V. A. Chichigin, V. G. Burdukovsky andB. A. Antoshechkin,Russ. Met. 1 (1976) 61.Google Scholar
  143. 143.
    R. R. Hough andR. Rolls,Scripta Met. 4 (1970) 17.Google Scholar
  144. 144.
    Idem, J. Mater. Sci. 6 (1971) 1493.Google Scholar
  145. 145.
    Idem, Scripta Met. 8 (1974) 39.Google Scholar
  146. 146.
    British Engine Technical Reports6 (1965) 76.Google Scholar
  147. 147.
    Ibid. 7 (1966) 42.Google Scholar
  148. 148.
    Ibid. 11 (1972) 63.Google Scholar
  149. 149.
    J. G. Ball,Chem. Eng. (London) (1976) 275.Google Scholar
  150. 150.
    W. M. Robertson,Trans. AIME 236 (1966) 1478.Google Scholar
  151. 151.
    M. J. Kelley andN. S. Stoloff,Met. Trans. A 6A (1975) 159.Google Scholar
  152. 152.
    S. P. Lynch, Proceedings of the 4th International Conference on Fracture,11 Vol. 2 (University of Waterloo Press, 1977) p. 859.Google Scholar
  153. 153.
    V. M. Zalkin,Sov. Mater. Sci. 4 (1968) 18.Google Scholar
  154. 154.
    M. A. Krishtal,ibid. 5 (1969) 537.Google Scholar
  155. 155.
    E. D. Shchukin andV. S. Yushchenko,ibid. 2 (1966) 95.Google Scholar
  156. 156.
    C. M. Preece andA. R. C. Westwood,Trans. ASM 62 (1969) 418.Google Scholar
  157. 157.
    A. A. Griffith,Phil. Trans. Roy. Soc. 221A (1920) 163.Google Scholar
  158. 158.
    C. E. Inglis,Trans. Inst. Naval Architects 55 (1913) 219.Google Scholar
  159. 159.
    C. Zener, “Fracturing of Metals” (ASM, Metals Park, Ohio, 1943) p. 3.Google Scholar
  160. 160.
    N. J. Petch, “Fracture”, Proceedings of the Swampscott Conference, (1959) edited by B. L. Averbachet al. (John Wiley, New York, 1959) p. 54.Google Scholar
  161. 161.
    A. N. Stroh,Adv. Phys. 6 (1957) 418.Google Scholar
  162. 162.
    E. D. Hondros,Phil Mag. 29 (1974) 771.Google Scholar
  163. 163.
    M. I. Chaevskii,Sov. Mater. Sci. 1 (1965) 433.Google Scholar
  164. 164.
    M. I. Chaevskii andV. V. Popovich,ibid. 2 (1966) 102.Google Scholar
  165. 165.
    I. N. Toropovskaya,ibid. 6 (1970) 324.Google Scholar
  166. 166.
    A. S. Tetelman andS. Kunz, Technical Report Contract DAHC-04-69-C-0008, UCLA (1973).Google Scholar
  167. 167.
    B. C. Edwards, H. E. Bishop, J. C. Riviere andB. L. Eyre, Aere R8298 (1976).Google Scholar
  168. 168.
    E. Levine, H. Solomon andI. Cadoff,Acta. Met. 12 (1964) 119.Google Scholar
  169. 169.
    A. W. Thompson andI. M. Bernstein, 4th International Conference on Fracture, (University of Waterloo Press, 1977) p. 249.Google Scholar
  170. 170.
    H. Allsop, RAE TR 77014.Google Scholar
  171. 171.
    M. Barlow andP. J. Planting,Z. Metall 60 (1969) 817.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • M. G. Nicholas
    • 1
  • C. F. Old
    • 1
  1. 1.Materials Development DivisionAEREHarwellUK

Personalised recommendations