Journal of Protein Chemistry

, Volume 12, Issue 3, pp 255–259 | Cite as

Binding affinity of influenza virus N9 neuraminidase with Fab fragments of monoclonal antibodies NC10 and NC41

  • L. C. Gruen
  • T. L. McInerney
  • R. G. Webster
  • D. C. Jackson
Article

Abstract

Sedimentation equilibrium centrifugation has been applied to determine the affinity and stoichiometry of the interaction between Fab fragments, derived from monoclonal antibodies NC10 and NC41, with influenza virus neuraminidase N9 isolated from either tern or whale. Although the two neuraminidase epitopes recognized by NC10 and NC41 Fab overlap, crystal-lographic studies have shown that the modes of binding of each Fab are different. The sedimentation equilibrium experiments described here reveal that the binding affinities are also different, with NC10 Fab binding more strongly to each neuraminidase. Furthermore, comparison of the affinity of binding of each antibody fragment reveals a stronger interaction with tern neuraminidase than with whale neuraminidase. Although the respective epitopes recognized by each antibody on the two antigens are similar, this technique shows that they do nevertheless possess sufficient differences to affect significantly the binding of antibody.

Key words

Neuraminidase antibody binding sedimentation equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Air, G. M., Els, M. C., Brown, L. E., Laver, W. G., and Webster, R. G. (1985).Virology 145, 237–248.Google Scholar
  2. Amit, A. G., Mariuzza, R. A., Phillips, S. E. V., and Poljak, R. J. (1986).Science 233, 747–753.Google Scholar
  3. Borrebaeck, C. A. K., Malmborg, A-C., Furebring, C., Michaelsson, A., Ward, E. S., Danielsson, L., and Ohlin, M. (1992).Biotechnology 10, 697–698.Google Scholar
  4. Colman, P. M. (1989). InThe Influenza Viruses (Krug, R. M., ed.), Plenum, New York, pp. 175–218.Google Scholar
  5. Colman, P. M., Laver, W. G., Varghese, J. N., Baker, A. T., Tulloch, P. A., Air, G. M., and Webster, R. G. (1987).Nature 326, 358–363.Google Scholar
  6. Colman, P. M., Tulip, W. R., Varghese, J. N., Tulloch, P. A., Baker, A. T., Laver, W. G., Air, G. M., and Webster, R. G. (1989).Phil. Trans. Roy. Soc. Lond. B. 323, 511–518.Google Scholar
  7. Davies, D. R., Padlan, E. A., and Sheriff, S. (1990).Ann. Rev. Biochem. 59, 439–473.Google Scholar
  8. Downie, J. C., Hinshaw, V. S., and Laver, W. G. (1977).Aust. J. Exp. Biol. Med. Sci. 55, 635–643.Google Scholar
  9. Gill, S. C., and von Hippel, P. H. (1989).Anal. Biochem. 182, 319–326.Google Scholar
  10. Greenwood, F. C., Hunter, W. M., and Glover, J. S. (1963).Biochem. J. 89, 114–123.Google Scholar
  11. Hinshaw, V. S., Bean, W. J., Geraci, J., Fiorelli, P., Early, G., and Webster, R. G. (1986).J. Virol. 58, 655–656.Google Scholar
  12. Howlett, G. J., and Markov, G. (1980).Arch. Biochem. Biophys. 202, 1507–1514.Google Scholar
  13. Jackson, D. C., Howlett, G. J., Nestorowicz, A., and Webster, R. G. (1983).J. Immunol. 130, 1313–1316.Google Scholar
  14. McInerney, T. L., Howlett, G. J., Gruen, L. C., and Jackson, D. C. (1993).Mol. Immunol. 30, 47–54.Google Scholar
  15. McKimm-Breschkin, J. L., Caldwell, J. B., Guthrie, R. E., and Kortt, A. A. (1991).J. Virol. Methods 32, 121–124.Google Scholar
  16. Padlan, E. A., Silverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J., and Davies, D. R. (1989).Proc. Nat. Acad. Sci. USA 86, 5938–5942.Google Scholar
  17. Schild, G. C., Newman, R. W., Webster, R. G., Major, D., and Hinshaw, V. S. (1980).Arch. Virol. 63, 171–184.Google Scholar
  18. Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. J., Finzel, B. C., and Davies, D. R. (1987).Proc. Nat. Acad. Sci. USA 84, 8075–8079.Google Scholar
  19. Smith, F. I., and Palese, P. (1989). InThe Influenza Viruses (Krug, R. M., ed.), Plenum, New York, pp. 319–359.Google Scholar
  20. Tulip, W. R., Varghese, J. N., Baker, A. T., van Donkelaar, A., Laver. W. G., Webster, R. G., and Colman, P. M. (1991).J. Mol. Biol. 221, 487–497.Google Scholar
  21. Tulloch, P. A., Colman, P. M., Davis, P. C., Laver, W. G., Webster, R. G., and Air, G. M. (1986).J. Mol. Biol. 190, 215–225.Google Scholar
  22. Varghese, J. N., and Colman, P. M. (1991).J. Mol. Biol. 221, 473–486.Google Scholar
  23. Varghese, J. N., Laver, W. G., and Colman, P. M. (1983).Nature 303, 35–40.Google Scholar
  24. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989).Nature 341, 544–546.Google Scholar
  25. Webster, R. G., Air, G. M., Metzger, D. W., Colman, P. M., Varghese, J. N., Baker, A. T., and Laver, W. G. (1987).J. Virol. 61, 2910–2916.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • L. C. Gruen
    • 1
  • T. L. McInerney
    • 2
  • R. G. Webster
    • 3
  • D. C. Jackson
    • 2
  1. 1.CSIRO Division of Biomolecular EngineeringParkvilleAustralia
  2. 2.Department of MicrobiologyUniversity of MelbourneParkvilleAustralia
  3. 3.Department of Virology and Molecular BiologySt. Jude Children's HospitalMemphis

Personalised recommendations