Advertisement

Theoretical and Mathematical Physics

, Volume 57, Issue 1, pp 993–1001 | Cite as

Quasiclassical asymptotic behaviors for discrete models of electron-phonon interaction: Maslov's method and the adiabatic approximation

  • Yu. M. Vorob'ev
  • S. Yu. Dobrokhotov
Article
  • 34 Downloads

Keywords

Asymptotic Behavior Discrete Model Adiabatic Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    W. P. Su, I. R. Schrieffer, and A. I. Heeger, Phys. Rev. B,22, 2099 (1980).Google Scholar
  2. 2.
    R. E. Peierls, Quantum Theory of Solids, Oxford (1955).Google Scholar
  3. 3.
    S. A. Brazovskii, I. E. Dzyaloshinskii, and I. M. Krichever, Zh. Eksp. Teor. Fiz.,83, 389 (1982).Google Scholar
  4. 4.
    V. P. Maslov, Perturbation Theory and Asymptotic Methods [in Russian], State University, Moscow (1965).Google Scholar
  5. 5.
    V. P. Maslov, “The WKB method in the multidimensional case,” Supplement to the Russian Translation Published by Mir, Moscow (1965) of: J. Heading, An Introduction to Phase-Integral Methods, Wiley, New York (1962).Google Scholar
  6. 6.
    V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973).Google Scholar
  7. 7.
    V. P. Maslov, The Complex WKB Method in Nonlinear Equations [in Russian], Nauka, Moscow (1977).Google Scholar
  8. 8.
    V. P. Maslov and M. V. Fedoryuk, The Quasiclassical Approximation for the Equations of Quantum Mechanics [in Russian], Nauka, Moscow (1976).Google Scholar
  9. 9.
    M. V. Karasev, Book of Problems on Operator Methods [in Russian], Moscow Institute of Electronic Engineering, Moscow (1979).Google Scholar
  10. 10.
    J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, Cambridge (1964).Google Scholar
  11. 11.
    V. V. Kucherenko, Izv. Akad. Nauk SSSR Ser. Mat.,38, 625 (1974).Google Scholar
  12. 12.
    M. V. Karasev and V. P. Maslov, in: Modern Problems of Mathematics, Vol. 13 [in Russian] (Itogi Nauki i Tekhn., VINITI, AN SSSR), VINITI, Moscow (1979), pp. 145–266.Google Scholar
  13. 13.
    A. D. Krakhnov, Usp. Mat. Nauk,31, 217 (1976).Google Scholar
  14. 14.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
  15. 15.
    I. M. Krichever, Usp. Mat. Nauk,33, 215 (1978).Google Scholar
  16. 16.
    S. Yu. Dobrokhotov and V. P. Maslov, in: Modern Problems of Mathematics, Vol. 15 [in Russian] (Itogi Nauki i Tekhn., VINITI, AN SSSR), VINITI, Moscow (1980).Google Scholar
  17. 17.
    B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Usp. Mat. Nauk,31, 55 (1976).Google Scholar
  18. 18.
    W. E. Ferguson, H. Flaschka, and D. W. McLaughlin, J. Comput. Phys.,45, 157 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Yu. M. Vorob'ev
  • S. Yu. Dobrokhotov

There are no affiliations available

Personalised recommendations