Meteorology and Atmospheric Physics

, Volume 43, Issue 1–4, pp 31–47 | Cite as

Lee cyclogenesis resulting from the combined outbreak of cold air and potential vorticity against the Alps

  • A. Tafferner
Lee Cyclogenesis


A conceptual model of lee cyclogenesis is given which combines the commonly observed predominant features inherent in Alpine lee cyclogenesis, to be: blocking of cold air due to the Alps and progression of a potential vorticity maximum over the Alps. Numerical simulations of observed cases of Alpine lee cyclogenesis are carried out whose flow development turn out to bear close resemblance to this model. Therefore far-reaching conclusions are drawn.


Climate Change Waste Water Water Management Vorticity Water Pollution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. GARP-ALPEX, 1982: Alpine Experiment, Experiment Design. GARP-ALPEX Publication Series No. 1, WMO, Geneva.Google Scholar
  2. Bleck, R., 1975: An economical approach to the use of wind data in the optimum interpolation of geo- and Montgomery potential fields.Mon. Wea. Rev.,103, 807–816.Google Scholar
  3. Bleck, R., 1977: Numerical simulation of lee cyclogenesis in the Gulf of Genoa.Mon. Wea. Rev.,105, 428–445.Google Scholar
  4. Bleck, R., 1982: A sensitivity experiment concerning the numerical simulation of lee cyclogenesis. ALPEX Preliminary Scientific Results. GARP-ALPEX, No. 7, WMO, Geneva, 20–35.Google Scholar
  5. Bleck, R., 1984: An isentropic coordinate model suitable of lee cyclogenesis simulation.Riv. Meteor. Aeronaut.,44, 189–194.Google Scholar
  6. Bleck, R., Mattocks, C., 1984: A preliminary analysis of the role of potential vorticity in Alpine lee cyclogenesis.Beitr. Phys. Atmos.,57, 357–368.Google Scholar
  7. Buzzi, A., Rizzi, R., 1975: Isentropic analysis of cyclogenesis in the lee of the alps.Riv. Ital. Geof.,1, 7–14.Google Scholar
  8. Buzzi, A., Tibaldi, S., 1978: Cyclogenesis in the lee of the Alps: A case study.Quart. J. Roy. Meteor. Soc.,104, 271–287.Google Scholar
  9. Dell'Osso, L., Tibaldi, S., 1982: Some preliminary results of an ALPEX case of lee cyclogenesis. ALPEX preliminary scientific results. GARP-ALPEX, No. 7, WMO, Geneva.Google Scholar
  10. Egger, J., 1972: Numerische Experimente zur Zyklogenese im Golf von Genua.Beitr. Phys. Atmos.,45, 320–346.Google Scholar
  11. Egger, J., 1989: A note on complete sets of material conservation laws.J. Fluid. Mech.,204, 543–548.Google Scholar
  12. Ficker, H. von, 1920: Der Einfluß der Alpen auf Fallgebiete des Luftdruckes und die Entstehung von Depressionen über dem Mittelmeer.Met. Zeitschr.,37, 350–363.Google Scholar
  13. Frenzen, G., Speth, P., 1986: Comparative study of several cases of Alpine lee cyclogenesis: kinetic energy and vorticity. Scientific results of ALPEX, GARP publications series no. 27, WMO, Geneva.Google Scholar
  14. Hoskins, B. J., McIntyre, M. E., Robertson, A. W., 1985: On the use and significance of isentropic potential vorticity maps.Quart. J. Roy. Meteor. Soc.,111, 877–946.Google Scholar
  15. Kleinschmidt, E., 1950: Über Aufbau und Entstehung von Zyklonen.Meteor. Rundsch.,3, 1–6.Google Scholar
  16. Küttner, J. (Chairman of a group of authors), 1980: The Alpine Experiment (ALPEX) Design Proposal. WMO, Geneva, 184 pp.Google Scholar
  17. Mattocks, C., Bleck, R., 1986: Jet streak dynamics and geostrophic adjustment processes during the initial stages of lee cyclogenesis.Mon. Wea. Rev.,114, 2033–2056.Google Scholar
  18. McGinley, J. A., Goerss, J. S., 1986: Effects of terrain height and blocking initialization on numerical simulation of Alpine lee cyclogenesis.Mon. Wea. Rev.,114, 1578–1590.Google Scholar
  19. Mesinger, F., Strickler, R. F., 1982: Effect on mountains on Genoa cyclogenesis.J. Meteor. Soc. Japan.,60, 326–338.Google Scholar
  20. Mesinger, F., 1985: The sigma system problem. Preprint volume. Seventh Conference on Numerical Weather Prediction, Montreal, June 17–20, 1985. Amer. Meteor. Soc. Boston, 340–347.Google Scholar
  21. Orlanski, I., 1983: Orographically induced vortex centers. Proceedings of the First Sino-American Workshop on Mountain Meteorology. Beijing: Science Press, 311–340. Amer. Meteor. Soc., Boston, MA.Google Scholar
  22. Pichler, H., Steinacker, R., 1987: On the synoptics and dynamics of orographically induced cyclones in the Mediterranean.Meteorol. Atmos. Phys.,36, 108–117.Google Scholar
  23. Smith, R. K., Reeder, M. J., 1988: On the movement and low-level structure of cold fronts.Mon. Wea. Rev.,116, 1927–1944.Google Scholar
  24. Tafferner, A., 1986: Numerical simulation of lee cyclogenesis during ALPEX with an isentropic coordinate model. Scientific Results of ALPEX, GARP Publication Ser. No. 27, WMO.Google Scholar
  25. Tafferner, A., 1988: Strahlstromstruktur und Leezyklogenese. Wissenschaftliche Mitteilungen No. 59, Universität München.Google Scholar
  26. Tibaldi, S., Buzzi, A., Malguzzi, P., 1980: Orographically induced cyclogenesis: analysis of numerical experiments.Mon. Wea. Rev.,108, 1302–1314.Google Scholar
  27. Tosi, E., Smith, R. B., Bradford, M. L., 1987: Aerial observations of stratospheric descent in a Gulf of Genoa cyclone.Meteorol. Atmos. Phys.,36, 141–160.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Tafferner
    • 1
  1. 1.Meteorologisches Institut der Universität MünchenMünchenFederal Republic of Germany

Personalised recommendations