Set-Valued Analysis

, Volume 1, Issue 4, pp 355–363 | Cite as

Convergence of decreasing sequences of convex sets in nonreflexive Banach spaces

  • Jonathan M. Borwein
  • Adrian S. Lewis
Article

Abstract

We consider nested sequences of linear or convex closed sets of the form arising in estimation and other inverse problems. We show that such sequences may fail to converge in any of the recently studied set convergences other than Mosco convergence. We also provide a positive result concerning the epislice convergence of related sequences of functions.

Mathematics Subject Classifications (1991)

Primary: 49A55, 90C25 secondary: 65K05, 49B27 

Key words

Set convergence Mosco convergence slice convergence Wijsman convergence Painlevé-Kuratowski convergence moment problems inverse problems nonreflexive spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.-P. and Frankowska, H.:Set Valued Analysis, Birkhaüser, Basle, 1990.Google Scholar
  2. 2.
    Beer, G.: The slice topology, a viable alternative to Mosco convergence in nonreflexive spaces,J. Nonlinear Anal.: Theory Methods, Appl. 19 (1992), 271–290.Google Scholar
  3. 3.
    Beer, G. and Borwein, J.: Mosco convergence of level sets and graphs of linear functionals,J. Math. Anal. Appl., accepted November 1991.Google Scholar
  4. 4.
    Beer, G. and Borwein, J.M.: Mosco convergence and reflexivity,Proc. Amer. Math. Soc. 109 (1990), 427–436.Google Scholar
  5. 5.
    Borwein, J.M. and Lewis, A.S.: Partially-finite convex programming inL 1: entropy maximization,SIAM J. Optim. 3 (1993), in press.Google Scholar
  6. 6.
    Borwein, J.M. and Lewis, A.S.: Partially-finite convex programming, (I), (II),Math. Programming, Series B 57 (1992), 15–48, 49–84.Google Scholar
  7. 7.
    Borwein, J.M. and Lewis, A.S.: Strong rotundity and optimization,SIAM J. Optim., accepted July 1992. [Research Report CORR 91–16].Google Scholar
  8. 8.
    Rockafelar, R.T.:Conjugate Duality and Optimization, SIAM, Philadelphia, 1974.Google Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Jonathan M. Borwein
    • 1
  • Adrian S. Lewis
    • 2
  1. 1.Department of Mathematics and StatisticsSimon Fraser UniversityBurnabyCanada
  2. 2.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations