Journal of Mammalian Evolution

, Volume 1, Issue 1, pp 3–30 | Cite as

Reflections on higher mammalian phylogenetics

  • Michael J. Novacek

Abstract

For well over a decade, the higher-level relationships of mammals has been the focus of intensive and broad-ranging investigations. The sources of evidence drawn upon for this purpose are both traditional (e.g., paleontology, skeletal morphology) and newly sampled (e.g., comparative gene sequencing). A basic methodology, nonetheless, pervades this diversity of sampling. Issues that concern all types of data include the assumptions for recognizing homology, the techniques for building trees, the justification of parsimony and weighting, and the means of evaluating and comparing different results. In some areas (e.g., paleontology, molecular comparisons), we have been continual or even explosive expansion of the data base. In other areas (e.g., comparative behavior, physiology, or comparisons involving many aspects of nonskeletal morphology), the expansion has been far less dramatic. Codifying large arrays of characters is no substitute for penetrating studies of comparative form, function, and ontogeny or careful sampling of a diversity of genes. It is hoped that the latter emphases are maintained and nourished. The results of all this recent activity show a mixed profile of resolution for higher-level patterns of phylogeny. Particularly, the higher eutherian mammal radiation still presents many problems. Such challenges, however, have attracted an unprecedented level of synthesis and interaction.

Key words

Mammalia phylogeny comparative data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adkins, R. M., and Honeycutt, R. L. (1991). Molecular phylogeny of the superorder Archonta.Proc. Natl. Acad. Sci. 88 1–5.Google Scholar
  2. Allard, M. W., Miyamoto, M. M., and Honeycutt, R. L. (1991). Tests for rodent polyphyly.Nature 353 610–611.Google Scholar
  3. Ammerman, L. K., and Hillis, D. M. (1990). Relationships within archontan mammals based on 12S r RNA gene sequence.Am. Zool. 30: 50A.Google Scholar
  4. Ammerman, L. K., and Hillis, D. M. (1992). A molecular test of bat relationships: Monophyly or diphyly?Syst. Biol. 41 222–232.Google Scholar
  5. Aplin, K., and Archer, M. (1987). Recent advances in marsupial systematics, with a new syncretic classification. InPossums and Opossums: Studies in Evolution, Vol. 1, M. Archer, ed., pp. xv-lxxii, Roy. Zool. Soc. NSW, Sydney.Google Scholar
  6. Archer, M., Flannery, F., Ritchie, A., and Molnar, R. E. (1985). First Mesozoic mammal from Australia: An early Cretaceous monotreme.Nature 318 363–366.Google Scholar
  7. Avery, O. T., McLeod, C. M., and McCarthy, M. (1944). Studies on the chemical nature of substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus Type III.J. Exp. Med. 79 137–158.Google Scholar
  8. Bailey, W. J., Slightom, J. L., and Goodman, M. (1992). Rejection of the “flying primate” hypothesis by phylogenetic evidence from the ε-globin gene.Science 256 86–89.Google Scholar
  9. Baker, R. J., Novacek, M. J., and Simmons, N. B. (1991). On the monophyly of bats.Syst. Zool. 40 216–231.Google Scholar
  10. Bauchot, R., and Stephan, H. (1966). Données nouvelles sur l'éncephalisation des insectivores et des prosimiens.Mammalia 30 160–196.Google Scholar
  11. Beard, K. C. (1990). Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera).Nature 345 340–341.Google Scholar
  12. Blainville, H. M. D. (1816). Prodome d'une nouvelle distribution systématique de règne animal.Bull. Soc. Philom. 1816 67–81.Google Scholar
  13. Bramble, D. M. (1978). Origin of the mammalian feeding complex: Models and mechanisms.Paleobiology 4 271–301.Google Scholar
  14. Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA.Proc. Natl. Acad. Sci. 76 1967–1971.Google Scholar
  15. Brown, W. M., Prager, E. M., Wang, A., and Wilson, A. C. (1982). Mitochondrial DNA sequences of primates: Tempo and mode of evolution.J. Mol. Evol. 18 225–239.Google Scholar
  16. Carroll, R. L. (1988).Vertebrate Paleontology and Evolution, W. H. Freeman, New York.Google Scholar
  17. Conroy, G. C., and Wible, J. R. (1978). Middle ear morphology ofLemur variegatus: Some implications for primate paleontology.Folia Primatol. 29 81–85.Google Scholar
  18. Coppinger, R. P., and Smith, C. K. (1990). A model for understanding the evolution of mammalian behavior. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 335–374, Plenum Press, New York.Google Scholar
  19. Cracraft, J., and Helm-Bychowski, K. (1991). Parsimony and phylogenetic inference using DNA sequences: Some methodological strategies. InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 184–220, Oxford University Press, New York, London.Google Scholar
  20. Crompton, W. A., and Jenkins, F. A. (1979). Origin of mammals. InMesozoic Mammals. The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworowska, and W. A. Clemens, eds., pp. 59–73, University of California Press, Berkeley.Google Scholar
  21. Cuvier, G. (1817).Le Règne Animal, Vol. 1, Déterville, Paris.Google Scholar
  22. Davis, D. D. (1955). Masticatory apparatus in the spectacled bearTremarctos ornatus.Fieldiana Zool. 37 24–46.Google Scholar
  23. De Jong, W. W. (1982). Eye lens proteins and vertebrate phylogeny. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 75–114, Plenum Press, New York.Google Scholar
  24. DeSalle, R., Gatesy, J., Wheeler, W., and Grimaldi, D. (1992). DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications.Science 257 1933–1936.Google Scholar
  25. Donoghue, M., Doyle, J., Gauthier, J., Kluge, A., and Rowe, T. (1989). The importance of fossils in phylogeny reconstruction.Annu. Rev. Ecol. Syst. 20 431–460.Google Scholar
  26. Edinger, T. (1964). Midbrain exposure and overlap in mammals.Am. Zool. 4 5–19.Google Scholar
  27. Eisenberg, J. F. (1975). Phylogeny, behavior, and ecology in the Mammalia. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 47–68, Plenum Press, New York.Google Scholar
  28. Eisenberg, J. F. (1982).The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behavior, University of Chicago Press, Chicago.Google Scholar
  29. Eldredge, N., and Cracraft, J. (1980).Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.Google Scholar
  30. Faith, D. P., and Cranston, P. S. (1991). Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure.Cladistics 7 1–28.Google Scholar
  31. Farris, J. S. (1988). HENNIG 86, Version 1.5, Distributed by the author, 41 Admiral Street, Port Jefferson Station, NY.Google Scholar
  32. Felsenstein, J. (1978). Cases in which parsimony or compatibility methods will be positively misleading.Syst. Zool. 27 401–410.Google Scholar
  33. Gall, J. G. (1981). Chromosome structure and the c-value paradox.J. Cell Biol. 91 3–14.Google Scholar
  34. Gaupp, E. (1913). Die Reichertsche Theorie (Hammer-, Amboss- und Kieferfrage).Arch. Anat. Entwicklungs. 1912 1–416.Google Scholar
  35. Gauthier, J., Kluge, A. G., and Rowe, T. (1988). Amniote phylogeny and the importance of fossils.Cladistics 4 105–209.Google Scholar
  36. Gingerich, P. D. (1986). Temporal scaling of molecular evolution in primates and other mammals.Mol. Biol. Evol. 3 205–221.Google Scholar
  37. Golenberg, E. M., Giannasi, D. E., Clegg, M. T., Smiley, C. J., Durbin, M., Henderson, D., and Zurawski, G. (1990). Chloroplast DNA sequence from a Miocene Magnolia species.Nature 344 656–658.Google Scholar
  38. Goodman, M. (1975). Protein sequence and immunological specificity. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 219–248, Plenum Press, New York.Google Scholar
  39. Goodman, M. (1989). Emerging alliance of phylogenetic systematics and molecular biology: A new age of exploration. InThe Hierarchy of Life, Nobel Symposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 43–61, Elsevier, Amsterdam.Google Scholar
  40. Goodman, M., and Moore, G. W. (1971). Immunodiffusion in the systematics of primates. I. The Catarrhini.Syst. Zool. 20 19–62.Google Scholar
  41. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E. (1982). Amino acid sequence evidence on the phylogeny of primates and other eutherians. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 115–191, Plenum Press, New York.Google Scholar
  42. Goodman, M., Miyamoto, M. M., and Czelusniak, J. (1987). Pattern and process in vertebrate phylogeny revealed by coevolution of molecules and morphologies. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 141–176, Cambridge University Press, Cambridge.Google Scholar
  43. Graur, D., Hide, W. A., and Li, W.-H. (1991). Is the guinea-pig a rodent?Nature 351 649–652.Google Scholar
  44. Gregory, W. K. (1910). The orders of mammals.Bull. Am. Mus. Nat. Hist. 27 1–524.Google Scholar
  45. Gregory, W. K. (1947). The monotremes and the palimpsest theory.Bull. Am. Mus. Nat. Hist. 88 1–52.Google Scholar
  46. Hayasaka, K., Gojobori, T., and Horai, S. (1988). Molecular phylogeny and evolution of primate mitochondrial DNA.Mol. Biol. Evol. 5 626–644.Google Scholar
  47. Hecht, M. K. (1976). Phylogenetic inference and methodology as applied to the vertebrate record.Evol. Biol. 9 335–363.Google Scholar
  48. Hennig, W. (1950).Grundzüge einer Theorie der phylogenetischen Systematik, Deutscher Zentralverlag, Berlin.Google Scholar
  49. Hennig, W. (1966).Phylogenetic Systematics, University of Illinois Press, Urbana.Google Scholar
  50. Hillis, D. M. (1991). Discrimination between phylogenetic signal and random noise in DNA sequences. InPhylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 278–294, Oxford University Press, New York.Google Scholar
  51. Hillis, D. M., and Dixon, M. T. (1989). Vertebrate phylogeny: Evidence from 28S ribosomal DNA sequences. InThe Hierarchy of Life, Nobel Symposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 355–367, Elsevier, Amsterdam.Google Scholar
  52. Hull, D. L. (1988).Science as a Process, University of Chicago Press, Chicago.Google Scholar
  53. Irwin, D. M., Kocher, T. D., and Wilson, A. C. (1991). Evolution of the cytochrome b gene of mammals.J. Mol. Evol. 32 128–144.Google Scholar
  54. Janis, C. M., and Scott, K. M. (1988). The phylogeny of the Ruminantia (Artiodactyla, Mammalia). InThe Phylogeny and Classification of Tetrapods, Vol. 2, M. J. Benton, ed., pp. 273–282, Clarendon Press, Oxford.Google Scholar
  55. Jenkins, F. A. (1974). Tree shrew locomotion and the origins of primate arborealism. InPrimate Locomotion, F. A. Jenkins, ed., pp. 85–115, Academic Press, New York.Google Scholar
  56. Jerison, H. J. (1973).Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  57. Kemp, T. S. (1983). The relationships of mammals.Zool. J. Linn. Soc. 77 353–384.Google Scholar
  58. Kielan-Jaworowska, Z. (1971). Results of the Polish-Mongolian paleontological expeditions. III. Skull structure and affinities of the Multituberculata.Paleaontol. Polon. 25 5–41.Google Scholar
  59. Kielan-Jaworowska, Z., Bown, T. M., and Lillegraven, J. A. (1979). Eutheria. InMesozoic Mammals. The First Two-Thirds of Mammalian History, J. A. Lillegraven, Z. Kielan-Jaworoska, and W. A. Clemens, eds., pp. 221–259, University of California Press, Berkeley.Google Scholar
  60. Kielan-Jaworowska, Z., Crompton, W. A., and Jenkins, F. A. (1987). The origin of egg-laying mammals.Nature 326 871–873.Google Scholar
  61. Kirsch, J. A. W. (1982). The builder and the bricks: Notes toward a philosophy of characters. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 587–594, Roy. Zool. Soc. NSW, Sydney.Google Scholar
  62. Kirsch, J. A. W., and Archer, M. (1982). Polythetic cladistics, or, when parsimony's not enough: The relationships of carnivorous marsupials. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 595–619, Roy. Zool. Soc. NSW, Sydney.Google Scholar
  63. Kirsch, J. A. W., and Johnson, J. I. (1983). Phylogeny through brain traits: Trees generated by neural characters.Brain Behav. Evol. 22 60–69.Google Scholar
  64. Kirsch, J. A. W., Dickerman, A. W., Reig, O. A., and Springer, M. S. (1991). DNA hybridization evidence for the Australasian affinity of the American marsupialDromiciops australis.Proc. Natl. Acad. Sci. 88 10465–10469.Google Scholar
  65. Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis of relationships amongEpicrates (Boidae, Serpentes).Syst. Zool. 38 7–25.Google Scholar
  66. Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences.Syst. Zool. 40 117–130.Google Scholar
  67. Krause, D., and Carlson, S. J. (1987). Prismatic enamel in multituberculate mammals: Tests of homology and polarity.J. Mammal. 68 755–765.Google Scholar
  68. Kühne, W. G. (1973). The systematic position of monotremes reconsidered (Mammalia).Zeitschr. Morph. Tiere 75 59–64.Google Scholar
  69. Lake, J. A. (1987). A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony.Mol. Biol. Evol. 4 167–191.Google Scholar
  70. Lauder, G. (1981). Form and function: Structural analysis in evolutionary morphology.Paleobiology 7 430–442.Google Scholar
  71. Leche, W. (1886). Ueber die SäugetiergattungGaleopithecus. Eine morphologische Untersuchung.K. Svenska Wetenskap. Akad. 21 1–92.Google Scholar
  72. Lillegraven, J. A. (1969). Latest Cretaceous mammals of the upper part of the Edmonton Formation of Alberta, Canada, and a review of the marsupial-placenta dichotomy in mammalian evolution.Univ. Kans. Paleontol. Contrib. 50 1–122.Google Scholar
  73. Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A., eds. (1979).Mesozoic Mammals. The First Two-Thirds of Mammalian History, University of California Press, Berkeley.Google Scholar
  74. Luckett, W. P. (1975). Ontogeny of the fetal membranes and placenta: Their bearing on primate phylogeny. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 157–182, Plenum Press, New York.Google Scholar
  75. Luckett, W. P. (1977). Ontogeny of amniote fetal membranes and their application to phylogeny. InMajor Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 439–516, Plenum Press, New York.Google Scholar
  76. Luckett, W. P. (1980). The suggested evolutionary relationships and classification of tree shrews. InComparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 3–31, Plenum Press, New York.Google Scholar
  77. Luckett, W. P. (1985). Superordinal and intraordinal affinities of rodents: Developmental evidence from dentition and placentation. InEvolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 227–276, Plenum Press, New York.Google Scholar
  78. Luckett, W. P. (1993). An ontogenetic assessment of dental homologies in therian mammals. InMammal Phylogeny, Vol. 1. Mesozoic Differentiation, Monotremes, Early Therians, and Marsupials, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).Google Scholar
  79. Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985).Evolutionary Relationships among Rodents, Plenum Press, New York.Google Scholar
  80. Luckett, W. P., and Hartenberger, J.-L. (1993). Monophyly or polyphyly of the order Rodentia: Possible conflict between morphological and molecular interpretations.J. Mammal. Evol. (in press).Google Scholar
  81. Luckett, W. P., and Szalay, F. S. (eds.) (1975).Phylogeny of the Primates, Plenum Press, New York.Google Scholar
  82. MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. InMammal Phylogeny, Vol. 2. Placentals, Springer Verlag, New York (in press).Google Scholar
  83. Maddison, D. R. (1991). The discovery and importance of multiple islands of most-parsimonious trees.Syst. Zool. 40 315–328.Google Scholar
  84. Maier, W. (1987a). The ontogenetic development of the orbitotemporal region in the skull ofMonodelphis domestica (Didelphidae, Marsupialia), and the problem of the mammalian alisphenoid. InMorphogenesis of the Mammalian Skull, H. J. Kuhn and U. Zeller, eds., pp. 71–90, Mammalia Depicta, Heft 13.Google Scholar
  85. Maier, W. (1987b). Der Processus angularis beiMonodelphis domestica (Didelphidae, Marsupialia) und seine Beziehungen zum Mittelohr: Eine ontogenetische and evolutions-morphologische Untersuchung.Gegenbaurs Morphol. Jahrb. 133 123–161.Google Scholar
  86. Maier, W. (1989). Morphologische Untersuchungen am Mittelohr der Marsupialia.Zeitschr. Zool. Syst. Evolforsch. 27 149–168.Google Scholar
  87. Marshall, L. G. (1979). Evolution of metatherian and eutherian (mammalian) characters: A review based on cladistic methodology.Zool. J. Linn. Soc. 66 369–410.Google Scholar
  88. Marshall, L. G., and de Muizon, C. (1988). The dawn of the Age of Mammals in South America.Natl. Geogr. Res. 4 23–55.Google Scholar
  89. Marshall, L. G., Case, J. A., and Woodburne, M. P. (1990). Phylogenetic relationships of the families of marsupials. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 433–505, Plenum Press, New York.Google Scholar
  90. Matthew, W. D. (1909). The Carnivora and Insectivora of the Bridger Basin, middle Eocene.Mem. Am. Mus. Nat. Hist. 9 291–567.Google Scholar
  91. McDowell, S. B. (1958). The Greater Antillean insectivores.Bull. Am. Mus. Nat. Hist. 115 113–214.Google Scholar
  92. McKenna, M. C. (1975). Toward a phylogenetic classification of the Mammalia. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 21–46, Plenum Press, New York.Google Scholar
  93. McKenna, M. C. (1987). Molecular and morphological analysis of high-level mammalian interrelationships. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 55–93, Cambridge University Press, Cambridge.Google Scholar
  94. McKenna, M. C. (1992). The alpha crystallin A chain of the eye lens and mammalian phylogeny.Ann. Zool. Fenn. 28 349–360.Google Scholar
  95. Mindell, D. P., Dick, C. W., and Baker, R. J. (1991). Phylogenetic relationships among megabats, microbats, and primates.Proc. Natl. Acad. Sci. 88 10322–10326.Google Scholar
  96. Miyamoto, M. M., and Boyle, S. M. (1989). The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. InThe Hierarchy of Life, Nobel Syposium 70, B. Fernholm, K. Bremer, and H. Jörnvall, eds., pp. 437–452, Elsevier, Amsterdam.Google Scholar
  97. Miyamoto, M. M., and Goodman, M. (1986). Biomolecular systematics of eutherian mammals: Phylogenetic patterns and classification.Syst. Zool. 35 230–240.Google Scholar
  98. Mossman, H. W. (1937). Comparative morphogenesis of the fetal membranes and accessory uterine structures.Carnegie Inst. Contrib. Embryol. 26 129–246.Google Scholar
  99. Mossman, H. W. (1987).Vertebrate Fetal Membranes, Rutgers University Press, New Brunswick, NJ.Google Scholar
  100. Nelson, G., and Platnick, N. (1981).Systematics and Biogeography: Cladistics and Vicariance, Columbia University Press, New York.Google Scholar
  101. Nixon, K. C., and Davis, J. I. (1991). Polymorphic taxa, missing values and cladistic analysis.Cladistics 7 233–241.Google Scholar
  102. Nixon, K. C., and Wheeler, Q. D. (1992). Extinction and the origin of species. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 119–143. Columbia University Press, New York.Google Scholar
  103. Norell, M. A., and Novacek, M. J. (1992). The fossil record and evolution: Comparing cladistic and paleontologic evidence for vertebrate history.Science 255 1690–1693.Google Scholar
  104. Novacek, M. J. (1980). Cranioskeletal features in tupaiids and selected Eutheria as phylogenetic evidence. InComparative Biology and Evolutionary Relationships of Tree Shrews, W. P. Luckett, ed., pp. 35–93, Plenum Press, New York.Google Scholar
  105. Novacek, M. J. (1982). Information for molecular studies from anatomical and fossil evidence on higher eutherian phylogeny. InMacromolecular Sequences in Systematic and Evolutionary Biology, M. Goodman, ed., pp. 3–41, Plenum Press, New York.Google Scholar
  106. Novacek, M. J. (1986). The skull of leptictid insectivorans and the higher-level classification of eutherian mammals.Bull. Am. Mus. Nat. Hist. 183 1–111.Google Scholar
  107. Novacek, M. J. (1990). Morphology, paleontology, and the higher clades of mammals. InCurrent Mammalogy, Vol. 2, H. H. Genoways, ed., pp. 507–543.Google Scholar
  108. Novacek, M. J. (1991). “All tree histograms” and the evaluation of cladistic evidence: some ambiguities.Cladistics 7 345–349.Google Scholar
  109. Novacek, M. J. (1992a). Mammalian phylogeny: Shaking the tree.Nature 356 121–125.Google Scholar
  110. Novacek, M. J. (1992b). Fossils as critical data for phylogeny. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 46–88, Columbia University Press, New York.Google Scholar
  111. Novacek, M. J. (1992c). Fossils, topologies, missing data, and the higher level phylogeny of eutherian mammals.Syst. Biol. 41 58–73.Google Scholar
  112. Novacek, M. J. (1993a). Morphological and molecular inroads to phylogeny. InProceedings of the Field Museum Spring Symposium 1992, O. Rieppel, ed., University of Chicago Press, Chicago (in press).Google Scholar
  113. Novacek, M. J. (1993b). Patterns of diversity of the mammalian skull. InThe Vertebrate Skull, Vol. 2, J. Hanken and B. K. Hall, eds., University of Chicago Press (in press).Google Scholar
  114. Novacek, M. J., and Wyss, A. R. (1986). Higher-level relationships of the Recent eutherian orders: Morphological evidence.Cladistics 2 257–287.Google Scholar
  115. Novacek, M. J., Wyss, A. R., and McKenna, M. C. (1988). The major groups of eutherian mammals. InThe Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 31–71, Clarendon Press, Oxford.Google Scholar
  116. Pascual, R., Archer, M., Jaureguizar, E. O., Prado, J. L., Godthelp, H., and Hand, S. J. (1992). First discovery of monotremes in South America.Nature 356 704–706.Google Scholar
  117. Patterson, C. (1980). Methods of paleobiogeography. InVicariance Biogeography: A Critique, G. J. Nelson and D. E. Rosen, eds., pp. 446–500, Columbia University Press, New York.Google Scholar
  118. Patterson, C. (1987). Introduction. InMolecules and Morphology in Evolution: Conflict or Compromise? C. Patterson, ed., pp. 1–22, Cambridge University Press, Cambridge.Google Scholar
  119. Pettigrew, J. D. (1986). Flying primates? Megabats have the advanced pathway from eye to midbrain.Science 231 1304–1306.Google Scholar
  120. Pettigrew, J. D. (1991a). Wings or brain? Convergent evolution in the origins of bats.Syst. Zool. 40 199–216.Google Scholar
  121. Pettigrew, J. D. (1991b). A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons.Syst. Zool. 40 231–239.Google Scholar
  122. Pettigrew, J. D., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. I., and Cooper, H. M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates).Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 325 489–559.Google Scholar
  123. Platnick, N. I., Griswold, C. E., and Coddington, J. A. (1991). On missing entries in cladistic analysis.Cladistics 7 337–343.Google Scholar
  124. Presley, R. (1979). The primitive course of the internal carotid artery in mammals.Acta Anat. 103 238–244.Google Scholar
  125. Prothero, D. R., and Schoch, R. (1989). Origin and evolution of the Perissodactyla: Summary and synthesis. InThe Evolution of Perissodactyls, D. Prothero and R. Schoch, eds., pp. 504–529, Oxford University Press, New York.Google Scholar
  126. Prothero, D. R., Manning, E. M., and Fischer, M. (1988). The phylogeny of ungulates. InThe Phylogeny and Classification of the Tetrapods, Vol.2, M. J. Benton, ed., p. 234.Google Scholar
  127. Queiroz, de, K., and Donoghue, M. J. (1988). Phylogenetic systematics and the species problem.Cladistics 4 317–338.Google Scholar
  128. Queiroz, de, K., and Donoghue, M. J. (1990). Phylogenetic systematics or Nelson's version of cladistics?Cladistics 6 61–75.Google Scholar
  129. Rose, K. D., and Emry, R. J. (1993). Relationships of Xenarthra, Pholidota, and fossil “edentates”: The morphological evidence. InMammal Phylogeny, Vol. 2. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).Google Scholar
  130. Rougier, G. W., Wible, J. R., and Hopson, J. A. (1992). Reconstruction of the cranial vessels in the Early Cretaceous mammalVincelestes neuquenianus: Implications for the evolution of the mammalian cranial vascular system.J. Vert. Paleont. 12 188–216.Google Scholar
  131. Rowe, T. (1988). Definition, diagnosis, and origin of Mammalia.J. Vert. Paleont. 8 241–264.Google Scholar
  132. Rowe, T., and Greenwald, N. R. (1987). The phylogenetic position and origin of Multituberculata.J. Vert. Paleo. (Abstr.) 7 24A-25A.Google Scholar
  133. Sanderson, M., and Donoghue, M. (1989). Patterns of variation in levels of homoplasy.Evolution 43 1781–1795.Google Scholar
  134. Sarich, W. M. (1969). Pinniped origins and the rate of evolution of carnivore albumins.Syst. Zool. 18 286–295.Google Scholar
  135. Sarich, W. M. (1985). Rodent macromolecular systematics. InEvolutionary Relationships among Rodents, W. P. Luckett and J.-L. Hartenberger, eds., pp. 423–452, Plenum Press, New York.Google Scholar
  136. Shoshani, J. (1993). Hyracoidea-Tethytheria affinity based on myological data. InMammal Phylogeny, Vol. 2. Placentals, F. S. Szalay, M. J. Novacek, and M. C. McKenna, eds., Springer Verlag, New York (in press).Google Scholar
  137. Sidow, A., and Wilson, A. C. (1991). Compositional statistics evaluated by computer simulation. InPhylogenetic Analysis of DNA Sequences, M. Miyamoto and J. Cracraft, eds., pp. 129–146, Oxford University Press, New York.Google Scholar
  138. Simmons, N. B., Novacek, M. J., and Baker, R. J. (1991). Approaches, methods, and the future of the chiropteran monophyly controversy: A reply to J. D. Pettigrew.Syst. Zool. 40 239–243.Google Scholar
  139. Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Am. Mus. Nat. Hist. 85 1–350.Google Scholar
  140. Simpson, G. G. (1971). Concluding remarks: Mesozoic mammals revisited.Linn. Soc. Zool. J. 50 181–198.Google Scholar
  141. Simpson, G. G. (1975). Recent advances in methods of phylogenetic inference. InPhylogeny of the Primates, W. P. Luckett and F. S. Szalay, eds., pp. 3–19, Plenum Press, New York.Google Scholar
  142. Simpson, G. G. (1978). Early mammals in South America: Fact, controversy, and mystery.Proc. Am. Phil. Soc. 122 318–328.Google Scholar
  143. Sues, H.-D. (1985). The relationships of the Tritylodontidae (Synapsida).Zool. J. Linn. Soc. 85 205–217.Google Scholar
  144. Swofford, D. L. (1990).PAUP. Phylogenetic Analysis Using Parsimony, User Manual, Version 3.0, Illinois Natural History Survey, Champaign.Google Scholar
  145. Swofford, D. L. (1991). When are phylogeny estimates from molecular and morphological data incongruent? InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 295–333, Oxford University Press, New York.Google Scholar
  146. Szalay, F. S. (1977). Phylogenetic relationships and a classification of the eutherian Mammalia. InMajor Patterns in Vertebrate Evolution, M. K. Hecht, P. C. Goody, and B. M. Hecht, eds., pp. 315–374, Plenum Press, New York.Google Scholar
  147. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and a classification. InCarnivorous Marsupials, Vol. 2, M. Archer, ed., pp. 621–640, Roy. Zool. Soc. NSW, Sydney.Google Scholar
  148. Szalay, F. S., and Bock, W. J. (1991). Evolutionary theory and systematics: Relationships between process and patterns.Zeitschr. Zool. Syst. Evolforsch. 29 1–39.Google Scholar
  149. Szalay, F. S., Novacek, M. J., and McKenna, M. C., eds. (1993).Mammal Phylogeny, Vol. 1. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials; Vol. 2. Placentals, Springer Verlag, New York (in press).Google Scholar
  150. Tandler, J. (1902). Zur Entwicklungsgeschichte der Kopfarterien by den Mammalia.Gegenbaurs Morph. Jahrb. 30 275–373.Google Scholar
  151. Thewissen, J. G., and Babcock, S. K. (1991). Distinctive cranial and cervical innervation of wing muscles: New evidence for bat monophyly.Science 251 934–936.Google Scholar
  152. Thiele, A., Vogelsang, M., and Hoffmann, K.-P. (1991). Patterns of retinotectal projection in the megachiropteran batRousettus aegyptiacus.J. Comp. Neurol. 314 671–683.Google Scholar
  153. Thomas, R. H., Schaffner, W., Wilson, A. C., and Pääbo, S. (1989). DNA phylogeny of the extinct marsupial wolf.Nature 340 465–467.Google Scholar
  154. Turnbull, W. D. (1970). Mammalian masticatory apparatus.Fieldiana Geol. 18 149–356.Google Scholar
  155. Vaughn, P. P. (1978).Mammalogy, W. B. Saunders, Philadelphia.Google Scholar
  156. Westerman, M., and Edwards, D. (1991). The relationship ofDromiciops australis to other marsupials: Data from DNA-DNA hybridisation studies.Aust. J. Zool. 39 123–130.Google Scholar
  157. Waterman, M. S., Joyce, J., and Eggert, M. (1991). Computer alignment of sequences. InPhylogenetic Analysis of DNA Sequences, M. M. Miyamoto and J. Cracraft, eds., pp. 59–72.Google Scholar
  158. Wheeler, Q. D. (1990). Ontogeny and character phylogeny.Cladistics 6 225–268.Google Scholar
  159. Wheeler, W. C. (1992). Extinction, sampling, and molecular phylogenetics. InExtinction and Phylogeny, M. J. Novacek and Q. D. Wheeler, eds., pp. 205–215, Columbia University Press, New York.Google Scholar
  160. Wheeler, W. C., and Honeycutt, R. L. (1988). Paired sequence difference in ribosomal RNAs: Evolutionary and phylogenetic implications.Mol. Biol. Evol. 5 90–96.Google Scholar
  161. Wible, J. R. (1986). Transformation in the extracranial course of the internal carotid artery in mammalian phylogeny.J. Vert. Paleo. 6 313–325.Google Scholar
  162. Wible, J. R. (1987). The eutherian stapedial artery: Character analysis and implications for superordinal relationships.Zool. J. Linn. Soc. 91 107–135.Google Scholar
  163. Wible, J. R., and Novacek, M. J. (1988). Cranial evidence for the monophyletic origin of bats.Am. Mus. Novitates 2911 1–19.Google Scholar
  164. Wyss, A. R., Novacek, M. J., and McKenna, M. C. (1987). Amino acid sequence versus morphological data and the interordinal relationship of mammals.Mol. Biol. Evol. 4 99–116.Google Scholar
  165. Zeller, U. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. InMorphogenesis of the Mammalian Skull, H.-J. Kuhn and U. Zeller, eds., pp. 17–50, Mammalia Depicta, Heft 13.Google Scholar
  166. Zuckerkandl, E., and Pauling, L. (1962). Molecular disease, evolution and genic heterogeneity. InHorizons in Biochemistry, M. Kash and B. Bullman, eds., pp. 189–225, Academic Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Michael J. Novacek
    • 1
  1. 1.Department of Vertebrate PaleontologyAmerican Museum of Natural HistoryNew York

Personalised recommendations