Journal of Materials Science

, Volume 19, Issue 9, pp 2781–2794

Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate

  • P. J. Barham
  • A. Keller
  • E. L. Otun
  • P. A. Holmes
Papers

Abstract

This paper presents a number of interesting results on the physical properties of poly-3-hydroxybutyrate (PHB). Data are presented on crystallization kinetics, morphology of melt- and solution-crystallized PHB, the variation of lamellar thickness with crystallization temperature, and the assessment of some thermodynamic quantities. These properties include surface free energies, heat of fusion and melting, and glass transition temperatures. It is shown that the special properties of PHB such as the large spherulite size, which is probably due to its exceptional purity, make it an ideal material for model studies of polymer crystallization and morphology. For example, we show that the variation of growth rate with crystallization temperature is consistent with the very latest theories; and that the single crystal morphology has important implications for the understanding of crystal growth in other polymer systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Lemoigne,Ann. Inst. Past. 39, (1925) 144.Google Scholar
  2. 2.
    J. Merrick,Photosynth. Bact. 199 (1978) 219.Google Scholar
  3. 3.
    E. A. Dawes andP. J. Senior,Adv. Microbial 10 (1973) 138.Google Scholar
  4. 4.
    J. S. Herron, J. D. King andD. C. White,Appl. Environ. Microbiol. 35 (1978) 251.Google Scholar
  5. 5.
    N. G. Carr,Biochem. Biophys. Acta 120 (1966) 308.Google Scholar
  6. 6.
    L. L. Wallen andW. K. Rohwedder,Environ. Sci. Technol. 8 (1974) 576.Google Scholar
  7. 7.
    A. C. Ward, B. I. Rowley andE. A. Dawes,J. Gen. Microbiol. 102 (1977) 61.Google Scholar
  8. 8.
    D. G. Lundgren, R. Alper, C. Schnaitman andR. H. Marchessault,J. Bacteriol. 89 (1965) 245.Google Scholar
  9. 9.
    P. A. Holmes, L. F. Wright andB. Alderson, European Patent Application 15123 (1979).Google Scholar
  10. 10.
    J. N. Baptist, US Patent 3044 942 (1962).Google Scholar
  11. 11.
    Idem, US Patent 3036 959 (1962).Google Scholar
  12. 12.
    R. M. Lafferty,Chem Rundsch. 30 (1977) 15.Google Scholar
  13. 13.
    D. Ellar, D. G. Lundgren, K. Okamuara andR. H. Marchessalt,J. Mol. Biol. 35 (1968) 489.Google Scholar
  14. 14.
    R. H. Marchessault, S. Coloumbe, H. Morikawa, K. Okamura andJ. F. Revol,Canad. J. Chem. 59 (1981) 38.Google Scholar
  15. 15.
    J. Cornibert andR. H. Marchessault,J. Mol Biol. 71 (1972) 735.Google Scholar
  16. 16.
    M. Yokouchi, Y. Chatani, H. Tadakoro, K. Teranishi andH. Tani,Polymer 14 (1973) 267.Google Scholar
  17. 17.
    K. Okamura andR. H. Marchessault, in “Conformational aspects of Biopolymers”, Vol. II, edited by G. N. Ramachandran (Academic Press, London and New York, 1967).Google Scholar
  18. 18.
    E. R. Howells,Chem. Ind. (1982) 508.Google Scholar
  19. 19.
    P. J. Barham,J. Mater. Sci. 19 (1984) in press.Google Scholar
  20. 20.
    L. Hughes andK. R. Richardson, European Patent Application 46 344 (1982).Google Scholar
  21. 21.
    J. Brandrup andE. H. Immergut, “Polymer Handbook” (Wiley Interscience, New York, 1966).Google Scholar
  22. 22.
    S. Atika, Y. Eindga, Y. Miyaki andH. Fukita,Macromolecules 9 (1976) 774.Google Scholar
  23. 23.
    P. H. Geil, “Polymer Single Crystals” (Interscience, New York, 1963).Google Scholar
  24. 24.
    R. G. C. Arridge andP. J. Barham,Polymer 19 (1978) 603.Google Scholar
  25. 25.
    I. A. Sauer, D. R. Morrow andG. C. Richardson,J. Appl. Phys. 36 (1965) 3017.Google Scholar
  26. 26.
    J. D. Hoffman,Polymer 24 (1983) 3.Google Scholar

Copyright information

© Chapman and Hall Ltd 1984

Authors and Affiliations

  • P. J. Barham
    • 1
  • A. Keller
    • 1
  • E. L. Otun
    • 1
  • P. A. Holmes
    • 2
  1. 1.H. H. Wills Physics LaboratoryUniversity of BristolBristolUK
  2. 2.ICI Agricultural DivisionBillinghamUK

Personalised recommendations