Journal of Chemical Ecology

, Volume 16, Issue 7, pp 2217–2228 | Cite as

Internest aggression and identification of possible nestmate discrimination pheromones in polygynous antFormica montana

  • Gregg Henderson
  • John F. Andersen
  • Joel K. Phillips
  • Robert L. Jeanne


Polygynous ant species often monopolize patchily distributed habitats and tolerate neighboring conspecifics while aggressively attacking other ant species. We determined that internest aggression occurs in the polygynous ant,Formica montana. We report for the first time the identities of cuticular hydrocarbons ofF. montana and present results of their possible role in nestmate recognition. Cuticular hydrocarbons contribute differentially to class discrimination, certain hydrocarbons being more class distinct.

Key words

Nestmate discrimination polygynous ants cuticular hydrocarbons multivariate analysis aggression prairie ants class distinction Hymenoptera Formicidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blomquist, G.J., andDillwith, J.W. 1985. Cuticular lipids, pp. 117–154in G.A. Kerkut and L.I. Gilbert (ed.). Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 3. Pergamon Press, New York.Google Scholar
  2. Bonavita-Coucourdan, A., Clement, J.L., andLange, C. 1987. Nestmate recognition: the role of cuticular hydrocarbonsin the antCamponotus vagus Scop.J. Entomol. Sci. 22:1–10.Google Scholar
  3. Breed, M.D., andBennett, B. 1987. Kin recognition in highly eusocial insects, pp. 243–285,in D.J.C. Fletcher and C.D. Michener (eds.). Kin Recognition in Animals. John Wiley & Sons, New York.Google Scholar
  4. Crosland, M.W.J. 1989a. Kin recognition in the antRhytidoponera confusa I. environmental odour.Anim. Behav. 37:912–919.Google Scholar
  5. Crosland, M.W.J. 1989b. Kin recognition in the antRhytidoponera confusa II. Gestalt odour.Anim. Behav. 37:920–926.Google Scholar
  6. Crozier, R.H. 1988. Kin recognition using innate labels: A central role for piggy-backing, pp. 143–153,in R.K. Grosberg, D. Hedgecock, and K. Nelson (eds.). Invertebrate Historecognition, Plenum Press, New York.Google Scholar
  7. Crozier, R.H., andDix, M. 1979. Analysis of two genetic models for innate components of colony odor in social Hymenoptera.Behav. Ecol. Sociobiol. 20:217–224.Google Scholar
  8. Espelie, K.E., andHermann, H.R. 1988. Congruent cuticular hydrocarbons: biochemical convergence of a social wasp, ant and a host plant.Biochem. Syst. Ecol. 16:505–508.Google Scholar
  9. Fielde, A.M. 1903. Artificial mixed nests of ants.Biol. Bull. 5:320–325.Google Scholar
  10. Hamilton, W.D. 1964. The genetical evolution of social behavior, I and II.J. Theor. Biol. 7:1–52.PubMedGoogle Scholar
  11. Henderson, G. 1989. The social biology and ecology of the prairie ant,Formica montana in southern Wisconsin. PhD thesis. Department of Entomology, University of Wisconsin-Madison.Google Scholar
  12. Henderson, G., Wagner, R.O., andJeanne, R.L. 1989. Prairie ant colony longevity and mound growth.Psyche 96:257–268.Google Scholar
  13. Hölldobler, B., andMichener, C.D. 1980. Mechanisms of identification and discrimination in social Hymenoptera, pp. 35–58in H. Markl (ed.). Evolution of Social Behavior: Hypotheses and Empirical Tests. Verlag Chemie, Weinheim.Google Scholar
  14. Hölldobler, B., andWilson, E.O. 1977. The number of queens: An important trait in ant evolution.Naturwissenschaften 64:8–15.Google Scholar
  15. Howard, R.W., McDaniel, C.A., andBlomquist, G.J. 1980. Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of termitophile and its host.Science 210:431–432.Google Scholar
  16. McCook, H.C. 1909. Ant Communities and How They are Governed. Harper and Brothers, New York.Google Scholar
  17. McCune, B. 1987. Multivariate analysis on the PC-ORD system. Holcomb Research Institute, Butler University Press, Indianapolis, Indiana.Google Scholar
  18. Obin, M.S. 1986. Nestmate recognition cues in laboratory and field colonies ofSolenopsis invicta Buren (Hymenoptera: Formicidae).J. Chem. Ecol. 12:1965–1975.Google Scholar
  19. Pamilo, P., Rosengren, R., Vepsäläinen, K., Varvio-Aho, S-L., andPisarski, B. 1978. Population genetics ofFormica ants. I. Patterns of enzyme genetic variation.Hereditas 89:233–248.Google Scholar
  20. Peeters, C.P. 1988. Nestmate discrimination in a ponerine ant (Rhytidoponera sp. 12) without a queen caste and with low intra-nest relatedness.Insectes Soc. 35:34–46.Google Scholar
  21. Rissing, S.W., Johnson, R.A., andPollock, G.B. 1986. Natal nest distribution and pleometrosis in the desert leaf-cutter ant,Acromyrmex versicolor (Pergande) (Hymenoptera: Formicidae).Psyche 93:177–186.Google Scholar
  22. Vander Meer, R.K. 1988. Behavioral and biochemical variation in the fire ant,Solenopsis invicta. pp. 223–256,in R.L. Jeanne (ed.). Interindividual Behavioral Variability in Social Insects. Westview Press, Boulder, Colorado.Google Scholar
  23. Vander Meer, R.K., andWojcik, D.P. 1982. Chemical mimcry in the myrmecophilous beetleMyrmecaphodius excavaticolis.Science 218:806–808.Google Scholar
  24. Vargo, E.L., andPorter, S.D. 1989. Colony reproduction by budding in the polygyne form ofSolenopsis invicta (Hymenoptera: Formicidae).Ann. Entomol. Soc. Am. 82:307–313.Google Scholar
  25. Wilson, E.O. 1971. The Insect Societies. Belknap/Harvard Press, Cambridge, Massachusetts.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Gregg Henderson
    • 1
  • John F. Andersen
    • 1
  • Joel K. Phillips
    • 1
  • Robert L. Jeanne
    • 1
  1. 1.Department of EntomologyUniversity of WisconsinMadison

Personalised recommendations