Meteorology and Atmospheric Physics

, Volume 44, Issue 1–4, pp 63–83

Predictability of low frequency modes

  • T. N. Krishnamurti
  • M. Subramaniam
  • D. K. Oosterhof
  • G. Daughenbaugh
Article

Summary

In this paper we propose a procedure for the extended integration of low frequency modes of the time scale of 30 to 50 days. A major limitation of the extended integrations arise from a contamination of low frequency modes as a result of energy exchanges from the higher frequency modes. In this study we show an example on the prediction of low frequency mode to almost a month which is roughly 3 weeks beyond the conventional predictability. This was accomplished by filtering the higher frequency modes from the initial state. The initial state included a time mean state and a low frequency mode. The sea surface temperature anomalies on this time scale and the annual cycle were also prescribed.

The specific experiment relates to the occurrence of a dry and a wet spell in the monsoon region. The meridional passage of an anticyclonic circulation anomaly over the lower troposphere and the eastward passage of a negative velocity potential anomaly over the upper levels of the Indian monsoon, on this time scale, are reasonably predicted. The aforementioned experiment was carried out with the 1979 data sets of the global experiment. A second example during an anomalous southward propagation of the low frequency waves over the Indian monsoon region during 1984 was also reasonably predicted by this model. Suggestions for further experimentation on the predictability of low frequency modes are proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asselin, R., 1972: Frequency filter for time integrations.Mon. Wea. Rev.,100, 487–490.Google Scholar
  2. Browning, G. L., Hack, J. J., Swarztrauber, P. N., 1989: A comparison of three numerical methods for solving differential equations on the sphere.Mon. Wea. Rev.,117, 1058–1075.Google Scholar
  3. Daley, R. C., Girard, C., Henderson, J., Simmonds, I., 1976: Short-term forecasting with a multi-level spectral primitive equation model. Part 1: Model formulation.Atmosphere,14, 98–116.Google Scholar
  4. Fjortoft, R., 1953: On the changes in the spectral distribution of kinetic energy for tow-dimensional, non-divergent flow.Tellus,5, 225–230.Google Scholar
  5. Harshvardhan, Corsetti, T. G., 1984: Longwave parameterization for the UCLA/GLAS GCM. NASA Tech. Mem. 86072, Goddard Space Flight Center, Greenbelt, MD 20771.Google Scholar
  6. Hartmann, D. L., Michelsen, M. L., 1989: Intraseasonal periodicties in Indian rainfall.J. Atmos. Sci.,46, 2838–2862.Google Scholar
  7. Hayashi, Y., 1980: Estimation of nonlinear energy transfer spectra by the cross-spectral method.J. Atmos. Sci.,37, 299–307.Google Scholar
  8. Jenkins, G. M., Watts, D. G., 1968:Spectral Analysis and Its Applications. San Francisco: Holden-Day, 525 pp.Google Scholar
  9. Kanamitsu, M., 1975: On numberical prediction over a global tropical belt. Report No. 75-1, pp. 1–282. (Available from the Dept. of Meteorology, Florida State University, Tallahassee, FL 32306, U.S.A.)Google Scholar
  10. Kanamitsu, M., Tada, K., Kudo, K., Sato, N., Isa, S., 1983: Description of the JMA operational spectra model.J. Meteor. Soc. Japan,61, 812–828.Google Scholar
  11. Kitade, T., 1983: Nonlinear normal mode initialization with physics.Mon. Wea. Rev.,111, 2194–2213.Google Scholar
  12. Krishnamurti, T. N., Subrahmanyam, D., 1982: The 30–50 day mode at 850 mb during MONEX.J. Atmos. Sci.,39, 2088–2095.Google Scholar
  13. Krishnamurti, T. N., Low-Nam, S., Pasch, R., 1983: Cumulus parameterization and rainfall rates II.Mon. Wea. Rev.,111, 815–828.Google Scholar
  14. Krishnamurti, T. N., Jayakumar, P. K., Sheng, J., Surgi, N., Kumar, A., 1985: Divergent circulations on the 30 to 50 day time scale.J. Atmos. Sci.,42, 364–375.Google Scholar
  15. Krishnamurti, T. N., Bedi, H. S., Heckley, W., Ingles, K., 1988a: Reduction of the spin up time for evaporation and precipitation in a spectral model.Mon. Wea. Rev.,116, 907–920.Google Scholar
  16. Krishnamurti, T. N., Oosterhof, D. K., Mehta, A. V., 1988b: Air-sea interaction on the time scale of 30–50 days.J. Atmos. Sci.,45, 1304–1322.Google Scholar
  17. Krishnamurti, T. N., Oosterhof, D. K., 1989: Prediction of the life cycle of a supertyphoon with a high resolution global model.Bull. Amer. Meteor. Soc.,70, 1218–1230.Google Scholar
  18. Lacis, A. A., Hansen, J. E., 1974: A parameterization for the absorption of solar radiation in the earth's atmosphere.J. Atmos. Sci.,31, 118–133.Google Scholar
  19. Lorene, A. C., 1984: The evolution of planetary scale 200 mb divergences during the FGGE year.Quart. J. Roy. Meteor. Soc.,110, 427–442.Google Scholar
  20. Mehta, A. V., Krishnamurti, T. N., 1988: Interannual variability of the 30 to 50 day wave motions.J. Met. Soc. Japan,66, 535–548.Google Scholar
  21. Ruston, H., Bordogna, J., 1966:Electric Networks: Functions, Filters, Analysis. New York: McGraw-Hill, 552 pp.Google Scholar
  22. Saltzman, B., 1970: Large-scale atmospheric energetics in the wave number domain.Rev. Geophys. Space Phys.,8, 829–302.Google Scholar
  23. Shanks, J., 1967: Recursion filters for digital processing.Geophysica,32, 33–51.Google Scholar
  24. Sheng, J., 1986: On the energetics of low frequency motions. Ph.D. Dissertation. (Available from the Department of Meteorology, Florida State University, Tallahassee, FL 32306, U.S.A.)Google Scholar
  25. Tiedke, M., Slingo, J., 1985: Development of the operational parameterization scheme. ECMWF Research Dept. Tech. Memo No. 108, 38 pp. (Available from ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, England.)Google Scholar
  26. Wallace, J. M., Tibaldi, S., Simmons, A. J., 1983: Reduction of systematic forecast errors in the ECMWF model through the introduction of envelope orography.Quart. J. Roy. Meteor. Soc.,109, 683–718.Google Scholar
  27. Yasunari, T., 1980: A quasi-stationary appearane of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India.J. Meteor. Soc. Japan,58, 225–229.Google Scholar
  28. Yasunari, T., 1981: Structure of an Indian summer monsoon system with around 40-day.J. Meteror. Soc. Japan,59, 336–354.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • T. N. Krishnamurti
    • 1
  • M. Subramaniam
    • 1
  • D. K. Oosterhof
    • 1
  • G. Daughenbaugh
    • 1
  1. 1.Department of MeteorologyFlorida State UniversityTallahasseeUSA

Personalised recommendations