Hyperfine Interactions

, Volume 11, Issue 1, pp 45–57 | Cite as

Quadrupole interaction at57Fe in zirconium metal

  • H. C. Verma
  • J. Chappert
  • G. N. Rao


The nuclear quadrupole interaction at57Fe nuclei in hcp α-zirconium metal is measured in the temperature range 4.2 to 560 K using Mössbauer spectroscopy of57Fe. The quadrupole splitting at room temperature is measured to be 0.660(8) mm/sec which corresponds to an electric field gradient of |eq|=3.17×1017 V/cm2 at the57Fe nucleus in a α-Zr host. As has been observed in many other systems, the results show significant electronic contributions. The temperature variation of the quadrupole interaction is much stronger than is expected from the lattice contributions and is found to follow theT3/2 dependence approximately.57FeZr does not follow the universal correlation betweeneqion andeqel observed in most of the normal metal hosts but follows the trends recently observed by Krusch and Forker for the transition metal hosts. Our results are compared with the predictions of the conduction electron charge shift model recently proposed by Bodenstedt and Perscheid.


Zirconium Electronic Contribution Conduction Electron Field Gradient Electron Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E.N. Kaufmann and R.J. Vianden, Revs. of Mod. Phys. 51 (1979) 161.Google Scholar
  2. [2]
    T.P. Das and M. Pomerantz, Phys. Rev. 123 (1961) 2070.Google Scholar
  3. [3]
    F.D. Feiock and W.R. Johnson, Phys. Rev. 187 (1969) 39.Google Scholar
  4. [4]
    T.P. Das, Phys. Scr. 11 (1975) 121; M.D. Thompson, P.C. Pattnaik and T.P. Das, Phys. Rev. B18 (1978) 5402.Google Scholar
  5. [5]
    M. Piecuch and Ch. Janot, Hyp. Int. 5 (1977) 69.Google Scholar
  6. [6]
    E.F. Bodenstedt and B. Perscheid, Hyp. Int. 5 (1978) 291.Google Scholar
  7. [7]
    P. Raghavan, E.N. Kaufmann, R.S. Raghavan, E.J. Ansaldo and R.A. Naumann, Phys. Rev. B13 (1978) 2835.Google Scholar
  8. [8]
    K. Krusch and M. Forker, Z. Phys. B37 (1980) 225.Google Scholar
  9. [9]
    R. Vianden, J. Kotthaus and P. Winand, Z. Phys. B37 (1980) 221.Google Scholar
  10. [10]
    J. Christiansen, P. Heubes, R. Keitel, W. Klinger, W. Loeffler, W. Sandner and W. Witthuhn, Z. Phys. B24 (1976) 177.Google Scholar
  11. [11]
    M.D. Thompson, P.C. Pattnaik and T.P. Das, Hyp. Int. 4 (1978) 515; K. Nishiyama and D. Riegel, Hyp. Int. 4 (1978) 490.Google Scholar
  12. [12]
    C. Janot and P. Delcroix, Phil. Mag. 30 (1974) 651.Google Scholar
  13. [13]
    R.P. Elliott, Constitution of binary alloys (McGraw Hill, New York, 1965) 445.Google Scholar
  14. [14]
    M. Forker and K. Krusch, Phys. Rev. B21 (1980) 2090.Google Scholar
  15. [15]
    T. Butz, G.M. Kalvius, H. Gobel and W.B. Holzapfel, Hyp. Int. 1 (1975) 1.Google Scholar
  16. [16]
    R.L. Rasera, T. Butz, A. Vasquez, H. Ernst, G.K. Shenoy, B.D. Dunlap, R.C. Reno and G. Schmidt, J. of Phys. F8 (1978) 1579.Google Scholar
  17. [17]
    W.E. Wallace, J. Chem. Phys. 41 (1964) 3857.Google Scholar
  18. [18]
    B. Sawicka, J. Sawicki, E. Maydell-Ondrasz and S. Lazarski, Phys. St. Sol. (a) 18 (1973) K 85.Google Scholar
  19. [19]
    B.D. Sawicka, M. Drwiega, J. Sawicki and J. Stanek, Hyp. Int. 5 (1978) 147.Google Scholar
  20. [20]
    S.M. Qaim, J. of Phys. C2 (1969) 1434.Google Scholar
  21. [21]
    G.K. Shenoy, B.D. Dunlap, D.E. Westlake and A. Dwight, J. de Physique Colloq 37 (1976) 129; M. Ableiter and U. Gonser (eds.), Proc. Int. Conf. on hydrogen in metals, Jülich, JUL-CONF 6, vol. 2 (Springer, 1972) p. 727.Google Scholar
  22. [22]
    G. Wortmann and D.L. Williamson, Hyp. Int. 1 (1975) 167.Google Scholar
  23. [23]
    E.N. Kaufmann, Phys. Rev. B8 (1973) 1382.Google Scholar
  24. [24]
    J. Goldak, L.T. Lloyd and C.S. Barrett, Phys. Rev. 144 (1966) 478.Google Scholar
  25. [25]
    H. Ernst, E. Hagn, E. Zech and G. Eska, Phys. Rev. B19 (1979) 4460.Google Scholar
  26. [26]
    C.V.K. Baba, D.B. Fossan, T. Faestermann, F. Feilitzseh, K.E.G. Löbner and C. Signorini, Phys. Lett. B48 (1974) 218.Google Scholar
  27. [27]
    R.S. Raghavan, E.N. Kaufmann and P. Raghavan, Phys. Rev. Lett. 34 (1975) 1280.Google Scholar
  28. [28]
    K. Krien, J.C. Soares, K. Freitag, R. Tischler, G.N. Rao, H.G. Muller, E.N. Kaufmann, A. Hanser and B. Feurer, Phys. Rev. B14 (1976) 4782.Google Scholar
  29. [29]
    C. Janot, P. Delcroix and M. Piecuch, Phys. Rev. B10 (1974) 2661.Google Scholar
  30. [30]
    E.S. Fisher and C.J. Renken, Phys. Rev. 135A (1964) 482.Google Scholar
  31. [31]
    H.C. Verma and G.N. Rao, Phys. Lett., in print.Google Scholar
  32. [32]
    W. Kundig, K. Ando and H. Bommel, Phys. Rev. 139A (1965) 889.Google Scholar

Copyright information

© North-Holland 1981

Authors and Affiliations

  • H. C. Verma
    • 1
  • J. Chappert
    • 2
  • G. N. Rao
    • 2
  1. 1.Department of PhysicsIndian Institute of TechnologyKanpurIndia
  2. 2.DRF/Laboratoire d'Interactions HyperfinesCentre d'Etudes Nucléaires de GrenobleGrenoble CédexFrance

Personalised recommendations