Advertisement

Journal of Materials Science

, Volume 20, Issue 4, pp 1178–1184 | Cite as

Strength, fracture toughness and Vickers hardness of CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP)

  • Koji Tsukuma
  • Masahiko Shimada
Papers

Abstract

Dense Ce-TZP ceramics containing about 7 to 16 mol% CeO2 were fabricated using fine powders prepared by the hydrolysis technique. The mechanical properties of these ceramics were evaluated. The bending strength of sintered bodies with 10 to 12 mol% CeO2 content and small grain-size was about 800 MPa. Fracture toughness was measured by two different methods; a micro-indentation technique and the chevron notched beam technique. A high fracture toughness was obtained for sintered bodies with 7 to 10% CeO2 content and large grain-size. Fracture toughness and hardness were dependent on CeO2 content and grain-size. These mechanical properties are discussed on the basis of the stability of the metastable tetragonal phase depending on CeO2 content and grain-size.

Keywords

Fracture Toughness CeO2 Fine Powder High Fracture Vickers Hardness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Longo andS. Roitti,Ceramurgia Int. 1 (1) (1971) 4.Google Scholar
  2. 2.
    F. F. Lange,J. Mater. Sci. 17 (1982) 255.Google Scholar
  3. 3.
    T. W. Coyle, W. S. Coblenz andB. A. Bender, “Toughness, Strength and Microstructures of Sintered CeO2-Doped ZrO2 alloys”,Amer. Ceram. Soc. Bull. 62 (1983) 966.Google Scholar
  4. 4.
    D. Munz, R. T. Bubsey andJ. L. Shannon, Jr.,J. Amer. Ceram. Soc. 63 (1980) 300.Google Scholar
  5. 5.
    K. Niihara, R. Morena andD. P. H. Hasselmann,J. Mater. Sci. Lett. 1 (1982) 13.Google Scholar
  6. 6.
    F. F. Lange andD. J. Green, in “Advances in Ceramics Vol. 3, Science and Technology of Zirconia”, edited by A. H. Heuer and L. W. Hobbs, (1981) pp. 217–225.Google Scholar
  7. 7.
    R. H. J. Hannink, K. A. Johnston, R. T. Pascoe andR. C. Garvie, ibid, pp. 116–136.Google Scholar
  8. 8.
    A. H. Hener, N. Claussen, W. M. Kriven andM. Rühle,J. Amer. Ceram. Soc. 65 (1982) 642.Google Scholar
  9. 9.
    M. V. Swain, in “Fracture Mechanics of Ceramics 6” edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange, (1983) pp. 355–70.Google Scholar
  10. 10.
    R. H. J. Hannink andM. V. Swain,J. Mater. Sci. 16 (1981) 1428.Google Scholar
  11. 11.
    B. Mussler, M. V. Swain andN. Claussen,J. Amer. Ceram. Soc. 65 (1982) 566.Google Scholar
  12. 12.
    F. F. Lange,J. Mater. Sci. 17 (1982) 235.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1985

Authors and Affiliations

  • Koji Tsukuma
    • 1
  • Masahiko Shimada
    • 2
  1. 1.Tokyo Research LaboratoriesToyo Soda Manufacturing Co., Ltd.KanagawaJapan
  2. 2.Department of Applied Chemistry, Faculty of EngineeringTohoku UniversityMiygaiJapan

Personalised recommendations