Journal of Protein Chemistry

, Volume 12, Issue 2, pp 121–131 | Cite as

Refolding of cytochromeb562 and its structural stabilization by introducing a disulfide bond

  • Yukio Kobayashi
  • Hiroyuki Sasabe
  • Nobuhiko Saitô


The packing mechanism of the secondary structures (4-α-helices and 310-helix) of cytochromeb562 is simulated by the “island model,” where the formation of protein structure is accomplished by the growth-type mechanism with the driving force of packing of the long-range and specific hydrophobic interactions. Packing proceeds through the formation of the structure at the nonhelical part, where a lot of hydrophobic pairs are distributed. Consequently, conformation, nearly similar to the native one, is successfully obtained. With the help of this result, the theoretical prediction of the possibility of forming this disulfide mutant (N22C/G82C) ofb562 can be performed prior to the experiments by our geometrical criterion (“lampshade”). This criterion is expected to be a significant principle for introducing possible disulfide bonds into a protein to be engineered.

Key words

Cytochromeb562 disulfide mutant island model site-directed mutagenesis 4-α-helical packing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983).J. Comp. Chem. 4, 187–217.Google Scholar
  2. Cohen, F. E., Richmond, T. J., and Richards, F. M. (1979).J. Mol. Biol. 132, 275–288.Google Scholar
  3. Efimov, A. V. (1979).J. Mol. Biol. 134, 23–40.Google Scholar
  4. Eriksson, A. E., Baase, W. A., Zhang, X.-J., Heinz, D. W., Blaber, M., Baldwin, E. P., and Matthews, B. W. (1992).Science 255, 178–183.Google Scholar
  5. Grantham, R. (1974).Science 185, 862–864.Google Scholar
  6. Gray, T. M., and Matthews, B. W. (1987).J. Biol. Chem. 262, 16,858–16,864.Google Scholar
  7. Hamada, K., Bethge, P. H., and Mathews, F. S. (1990).Protein Data Bank, Department of Chemistry, Brookhaven National Laboratory, Upton, New York.Google Scholar
  8. Hol, W. G. J., Halie, L. M., and Sander, C. (1981).Nature 294, 532–536.Google Scholar
  9. Israelachvili, J., and Pashly, R. (1982).Nature 300, 341–342.Google Scholar
  10. Jones, D. D. (1975).J. Theor. Biol. 50, 167–183.Google Scholar
  11. Kobayashi, Y., Sasabe, H., Akutsu, T., and Saitô, N. (1992).Biophys. Chem. 44, 113–127.Google Scholar
  12. Lederer, F., Glatigny, A., Bethge, P. H., Bellamy, H. D., and Mathews, F. S. (1981).J. Mol. Biol. 148, 427–448.Google Scholar
  13. Levitt, M., and Chothia, C. (1976).Nature 261, 552–558.Google Scholar
  14. Mathews, F. S., Bethge, P. H., and Czerwinski, E. W. (1979).J. Biol. Chem. 245, 1699–1706.Google Scholar
  15. Matsumura, M., Becktel, W. J., Levitt, M., and Matthews, B. W. (1989).Proc. Natl. Acad. Sci. USA 86, 6562–6566.Google Scholar
  16. Matthews, B. W., Nicholson, H., and Becktel, W. J. (1987).Proc. Natl. Acad. Sci. USA 84, 6663–6667.Google Scholar
  17. Mitchinson, C., and Wells, J. A. (1989).Biochemistry 28, 4807–4815.Google Scholar
  18. Nemethy, G., and Scheraga, H. A. (1977).Q. Rev. Biophys. 10, 239–352.Google Scholar
  19. Nishikawa, S., Adiwinata, J., Morioka, H., Fujimura, T., Tanaka, T., Uesugi, S., Hakoshima, T., Tomita, K., Nakagawa, S., and Ikehara, M. (1990).Protein Engineering 3, 443–448.Google Scholar
  20. Nozaki, Y., and Tanford, C. (1971).J. Biol. Chem. 246, 2211–2217.Google Scholar
  21. Ohlendorf, D. H., Finzel, B. C., Weber, P. C., and Salemme, F. R. (1987).Protein Engineering, Alan R. Liss, New York, pp. 165–173.Google Scholar
  22. Ota, M., and Saitô, N. (1992).J. Protein Chem. 11, 623–628.Google Scholar
  23. Pabo, C. O., and Suchanek, E. G. (1986).Biochemistry 25, 5987–5991.Google Scholar
  24. Pantoliano, M. W., Ladner, R. C., Bryan, P. N., Rollence, M. L., Wood, J. F., and Poulos, T. L. (1987).Biochemistry 26, 2077–2082.Google Scholar
  25. Perry, L. J., and Wetzel, R. (1984).Science 226, 555–557.Google Scholar
  26. Perry, L. J., and Wetzel, R. (1986).Biochemistry 25, 733–739.Google Scholar
  27. Ptitsyn, O. B., and Rashin, A. A. (1975).Biophys. Chem. 3, 1–20.Google Scholar
  28. Regan, L., and DeGrado, W. F. (1988).Science 241, 976–978.Google Scholar
  29. Richmond, T. J., and Richards, F. M. (1978).J. Mol. Biol. 119, 537–555.Google Scholar
  30. Saitô, N. (1982).Mem. Sch. Sci. Eng. Waseda Univ. 46, 295–337.Google Scholar
  31. Saitô, N. (1989).Adv. Biophys. 25, 95–132.Google Scholar
  32. Saitô, N., Kobayashi, Y., Ota, M., and Mitaku, S. (1992).Report on Progress of Polymer Physics in Japan 35, 1–22.Google Scholar
  33. Saitô, N., Shigaki, T., Kobayashi, Y., and Yamamoto, M. (1988).Proteins Struct. Funct. Genet. 3, 199–207.Google Scholar
  34. Saitô, N., Yura, K., and Fukuda, Y. (1990).Protein Structural Analysis, Folding and Design, Japan Scientific Societies Press, Tokyo, Elsevier, pp. 19–36.Google Scholar
  35. Sasabe, H., Furuno, T., Otomo, J., Tomioka, H., Urabe, Y., Nagamune, T., Kim, K.-H., Kobayashi, K., and Kobayashi, Y. (1991).Thin Solid Films (in press).Google Scholar
  36. Sauer, R. T., Hehir, K., Stearman, R. S., Weiss, M. A., Jeitler-Nilsson, A., Suchanek, E. G., and Pabo, C. O. (1986).Biochemistry 25, 5992–5998.Google Scholar
  37. Scheraga, H. A. (1983).Biopolymers 22, 1–14.Google Scholar
  38. Sheridan, R. P., Levy, R. M., and Salemme, F. R. (1982).Proc. Natl. Acad. Sci. USA 79, 4545–4549.Google Scholar
  39. Warshel, A., and Levitt, M. (1976).J. Mol. Biol. 106, 421–437.Google Scholar
  40. Watanabe, K., Nakamura, A., Fukuda, Y., and Saitô, N. (1991).Biophys. Chem. 40, 293–301.Google Scholar
  41. Weber, P. C., and Salemme, F. R. (1980).Nature 287, 82–84.Google Scholar
  42. Weber, P. C., Salemme, F. R., Mathews, F. S., and Bethge, P. H. (1981).J. Biol. Chem. 256, 7702–7704.Google Scholar
  43. Yoshimura, T., Noguchi, H., Inoue, T., and Saitô, N. (1991).Biophys. Chem. 40, 277–291.Google Scholar
  44. Zhang, X.-J., Baaase, W. A., and Matthews, B. W. (1990).Biochemistry 30, 2012–2017.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • Yukio Kobayashi
    • 1
  • Hiroyuki Sasabe
    • 1
  • Nobuhiko Saitô
    • 2
  1. 1.Frontier Research ProgramThe Institute of Physical and Chemical Research (RIKEN)Wako, SaitamaJapan
  2. 2.Department of Applied PhysicsWaseda UniversityTokyoJapan

Personalised recommendations