Advertisement

Journal of Statistical Physics

, Volume 60, Issue 5–6, pp 561–583 | Cite as

Geometric properties of random disk packings

  • Boris D. Lubachevsky
  • Frank H. Stillinger
Articles

Abstract

Random packings ofN⩽2000 rigid disks in the plane, subject to periodic boundary conditions on a square primitive cell, have been generated by a concurrent construction which treats all disks on an equal footing, as opposed to previously investigated sequential constructions. The particles start with random positions and velocities, and as they move about they grow uniformly in size, from points to jammed disks. The collection of packings displays several striking geometric features. These include (for largeN) typically polycrystalline textures with irregular grain boundaries and linear shear fractures. The packings occasionally contain monovacancies and trapped but unjammed “rattler” disks. The latter appear to be confined to the grain boundaries. The linear shear fractures preserve bond orientational order, but disrupt translational order, within the crystalline grains. A new efficient event-driven simulation algorithm is employed to generate the histories of colliding and jamming disks. On a computer which can process one million floating-point instructions per second the algorithm processes more than one million pairwise collisions per hour.

Key words

Rigid disks rigid spheres random packings rattlers grain boundaries vacancies hexatic phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31(2):459–466 (1959).Google Scholar
  2. 2.
    H. C. Andersen,J. Chem. Phys. 72:2384 (1980).Google Scholar
  3. 3.
    C. J. Basheet al., IBM's Early Computers (MIT Press, Cambridge, Massachusetts, 1986).Google Scholar
  4. 4.
    C. H. Bennett,J. Appl. Phys. 43:2727 (1972).Google Scholar
  5. 5.
    J. D. Bernal,Proc. R. Soc. A 280:299 (1964).Google Scholar
  6. 6.
    F. P. Buff and F. H. Stillinger,J. Chem. Phys. 39:1911 (1963).Google Scholar
  7. 7.
    S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1953), Chapters 5 and 6.Google Scholar
  8. 8.
    K. E. Davis, W. B. Russel, and W. J. Glantschnig,Science 245:507 (1989).Google Scholar
  9. 9.
    J. J. Erpenbeck and W. W. Wood, Molecular dynamics techniques for hard-core systems, inStatistical Mechanics. Part B:Time-Dependent Processes, B. J. Berne, ed. (Plenum, New York, 1977).Google Scholar
  10. 10.
    J. L. Finney,Nature 266:309 (1977), and references therein.Google Scholar
  11. 11.
    H. L. Frisch,Adv. Chem. Phys. 6:229 (1964).Google Scholar
  12. 12.
    P. H. Gaskell, inGlassy Metals, Vol. II, H. Beck and H.-J. Güntherodt, eds. (Springer, Berlin, 1983), pp. 5–49.Google Scholar
  13. 13.
    K. Huang and C. N. Yang,Phys. Rev. 105:767 (1957).Google Scholar
  14. 14.
    M. G. Kendall,A Course in the Geometry of n Dimensions (Hafner, New York, 1961), p. 36.Google Scholar
  15. 15.
    D. E. Knuth,Art of Computer Programming, Vol. 3,Sorting and Searching (Addison-Wesley, 1973).Google Scholar
  16. 16.
    T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106:1135 (1957).Google Scholar
  17. 17.
    P. W. Leung, C. L. Henley, and G. V. Chester,Phys. Rev. B 39:446 (1989).Google Scholar
  18. 18.
    B. D. Lubachevsky,J. Comp. Phys. (1990).Google Scholar
  19. 19.
    G. Mason and W. Clark,Nature 207:512 (1965).Google Scholar
  20. 20.
    C. A. Murray and D. H. van Winkle,Phys. Rev. A 34:562 (1986).Google Scholar
  21. 21.
    D. R. Nelson and B. J. Halperin,Phys. Rev. B 19:2457 (1979).Google Scholar
  22. 22.
    R. Pindak, D. J. Bishop, and W. O. Sprenger,Phys. Rev. Lett. 44:1461 (1980).Google Scholar
  23. 23.
    C. A. Rogers,Packing and Covering (Cambridge University Press, Cambridge, 1964), p. 3.Google Scholar
  24. 24.
    G. D. Scott,Nature 194:957 (1962).Google Scholar
  25. 25.
    N. J. A. Sloane,Sci. Am. 250(1):116 (1984).Google Scholar
  26. 26.
    W. A. Steele,J. Phys. Chem. 69:3446 (1965).Google Scholar
  27. 27.
    F. H. Stillinger, E. A. DiMarzio, and R. L. Kornegay,J. Chem. Phys. 40:1564 (1964).Google Scholar
  28. 28.
    F. H. Stillinger and Z. W. Salsburg,J. Stat. Phys. 1:179 (1969).Google Scholar
  29. 29.
    F. H. Stillinger and T. A. Weber,J. Chem. Phys. 83:4767 (1985).Google Scholar
  30. 30.
    J. Vieillard-Baron,J. Chem. Phys. 56:4729 (1972).Google Scholar
  31. 31.
    M. Widom, K. J. Strandburg, and R. H. Swendsen,Phys. Rev. Lett. 58:706 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Boris D. Lubachevsky
    • 1
  • Frank H. Stillinger
    • 1
  1. 1.AT&T Bell LaboratoriesMurray Hill

Personalised recommendations