Advertisement

Journal of Statistical Physics

, Volume 59, Issue 3–4, pp 799–817 | Cite as

Chiral Potts model as a descendant of the six-vertex model

  • V. V. Bazhanov
  • Yu. G. Stroganov
Articles

Abstract

We observe that theN-state integrable chiral Potts model can be considered as a part of some new algebraic structure related to the six-vertex model. As a result, we obtain a functional equation which is supposed to determine all the eigenvalues of the chiral Potts model transfer matrix.

Key words

Yang-Baxter equation Hopf algebra chiral Potts model functional equations transfer matrix high-genus curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Onsager,Phys. Rev. 65:117 (1944).Google Scholar
  2. 2.
    R. J. Baxter,Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).Google Scholar
  3. 3.
    L. D. Faddeev,Sov. Sci. Rev. C 1:107–155 (1980).Google Scholar
  4. 4.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. Yan,Phys. Lett. A 123:219 (1987).Google Scholar
  5. 5.
    B. M. McCoy, J. H. H. Perk, S. Tang, and C. H. Sah,Phys. Lett. A 125:9 (1987).Google Scholar
  6. 6.
    H. Au-Yang, B. M. McCoy, J. H. H. Perk, and S. Tang,Algebraic Analysis, Vol. 1, M. Kashiwara and T. Kawai, eds (Academic Press, New York, 1988).Google Scholar
  7. 7.
    R. J. Baxter, J. H. H. Perk, and H. Au-Yang,Phys. Lett. A 128:138 (1988); H. Au-Yang and J. H. H. Perk, Onsager's star triangle equation: Master key to the integrability, inAdvanced Studies in Pure Mathematics, Vol. 19 (Kinokuniya-Academic, 1989).Google Scholar
  8. 8.
    L. Dolan and M. Grady,Phys. Rev. D 25:1587 (1982).Google Scholar
  9. 9.
    S. Howes, L. P. Kadanoff, and M. den Nijs,Nucl. Phys. B 215[FS7]:169 (1983).Google Scholar
  10. 10.
    G. von Gehlen and V. Rittenberg,Nucl. Phys. B 257[FS14]:351 (1985).Google Scholar
  11. 11.
    E. H. Lieb,Phys. Rev. 162:162 (1967);Phys. Lett. 18:1046,19:108 (1967).Google Scholar
  12. 12.
    B. Sutherland,Phys. Rev. Lett. 19:103 (1967).Google Scholar
  13. 13.
    G. Albertini, B. M. McCoy, and J. H. H. Perk, Eigenvalue spectrum of the superintegrable chiral Potts model,” inAdvanced Studies in Pure Mathematics, Vol. 19 (Kinokuniya-Academic, 1989).Google Scholar
  14. 14.
    G. Albertini, B. M. McCoy, and J. H. H. Perk,Phys. Lett. A 139:204 (1989).Google Scholar
  15. 15.
    G. Albertini, B. M. McCoy, and J. H. H. Perk,Phys. Lett. A 135:159 (1989).Google Scholar
  16. 16.
    R. J. Baxter,Phys. Lett. A 133:185 (1988).Google Scholar
  17. 17.
    R. J. Baxter, A simple solvableZ nHamiltonian,Phys. Lett. A, to appear.Google Scholar
  18. 18.
    R. J. Baxter, Superintegrable chiral Potts models, thermodynamic properties, an “inverse” model, and a simple associated Hamiltonian, Preprint CMA-R12-89, Canberra (1989), to appear inJ. Stat. Phys. Google Scholar
  19. 19.
    R. J. Baxter, V. V. Bazhanov, and J. H. H. Perk, Functional relations for transfer matrices of the chiral Potts model, in Proceedings of Australian National University Workshop on Yang-Baxter equations, Canberra (1989), to be published inInt. J. Mod. Phys. B.Google Scholar
  20. 20.
    V. G. Drinfeld, “Quantum Groups,”Proc. Int. Congress of Mathematics, Berkeley, 1987, pp. 798–820.Google Scholar
  21. 21.
    L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtajan,Algebra Analiz 1(1):178 (1989).Google Scholar
  22. 22.
    E. K. Sklyanin,Funk. Anal. Prilozh. 16(4):27 (1982).Google Scholar
  23. 23.
    V. A. Fateev and A. B. Zamolodchikov,Phys. Lett. A 92:37 (1982).Google Scholar
  24. 24.
    A. G. Izergin and V. E. Korepin,Nucl. Phys. B 205:401 (1982); V. O. Tarasov,Teor. Mat. Fiz. 63(2):175 (1985).Google Scholar
  25. 25.
    R. J. Baxter,Ann. Phys. 76:1 (1973).Google Scholar
  26. 26.
    V. B. Matveev and A. O. Smirnov, Some comments on the solvable chiral Potts model,Lett. Math. Phys. (1989).Google Scholar
  27. 27.
    A. N. Kirillov and N. Y. Reshetikhin,J. Phys. A: Math. Gen. 19:565 (1986).Google Scholar
  28. 28.
    Y. E. Korepin and V. O. Tarasov. Private communication.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. V. Bazhanov
    • 1
  • Yu. G. Stroganov
    • 1
  1. 1.Institute for High Energy PhysicsSerpukhov, Moscow RegionUSSR

Personalised recommendations