Advertisement

Theoretica chimica acta

, Volume 74, Issue 5, pp 381–402 | Cite as

A new method for the direct calculation of resonance parameters with application to the quasibound states of the H2X1Σ g + system

  • David W. Schwenke
Article

Abstract

A new method for the direct calculation of resonance parameters is presented. It is based upon searching for poles of the scattering matrix at complex energies. This search is expedited by the use of analytic derivatives of the scattering matrix with respect to the total energy. This procedure is applied initially to a single channel problem, but is generalizable to more complicated systems. Using the most accurate available potential energy data, we calculate resonance parameters for all of the physically important quasibound states of the ground electronic state of the hydrogen molecule. Corrections to the Born-Oppenheimer potential are included and assessed. The new method has no difficulty locating resonances with widths greater than about 1×10−7 cm−1. It is easier to find narrow resonances by monitoring the dependence of the imaginary part of the reactance matrix on the real part of a complex energy than to monitor the dependence of the eigenphase sum on energy at real energies.

Key words

Resonance Complex energy Derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simons J (1984). In: Truhlar DG (ed) Resonances. American Chemical Society, Washington, pp 3–16Google Scholar
  2. 2.
    Roberts RE, Bernstein RB, Curtiss CF (1969) J Chem Phys 50:5163–5176Google Scholar
  3. 3.
    Taylor JR (1983) Scattering theory. Krieger, Malabar, FlaGoogle Scholar
  4. 4.
    Ashton CJ, Child MS, Hutson JM (1983) J Chem Phys 78:4025–4039Google Scholar
  5. 5.
    Hayes EF, Walker RB (1984). In: Truhlar DG (ed) Resonances. American Chemical Society, Washington, pp 493–513Google Scholar
  6. 6.
    Bartschat K, Burke PG (1986) Computer Phys Commun 41:75–84Google Scholar
  7. 7.
    Schwenke DW, Truhlar DG (1987) J Chem Phys 87:1095–1106Google Scholar
  8. 8.
    LeRoy RJ, Liu W-K (1978) J Chem Phys 69:3622–3631Google Scholar
  9. 9.
    Basilevsky MV, Ryaboy VM (1981) Int J Quantum Chem 19:611–635; (1984) Chem Phys 86:67–83; (1987) J Comp Chem 8:683–699Google Scholar
  10. 10.
    Watson DK (1984) Phys Rev A 29:558–561; (1986) 34:1016–1025; (1986) J Phys B 19:293–299Google Scholar
  11. 11.
    Waech TG, Bernstein RB (1967) J Chem Phys 46:4905–4911Google Scholar
  12. 12.
    LeRoy RJ, Bernstein RB (1971) J Chem Phys 54:5114–5126Google Scholar
  13. 13.
    LeRoy RJ (1971) J Chem Phys 54:5433–5434Google Scholar
  14. 14.
    Schwartz C, LeRoy RJ (1987) J Mol Spect 121:420–439Google Scholar
  15. 15.
    Wolniewicz L (1983) J Chem Phys 78:6173–6181Google Scholar
  16. 16.
    Kołos W, Szalewicz K, Monkhorst HJ (1986) J Chem Phys 84:3278–3283Google Scholar
  17. 17.
    Weidenmüller HA (1964) Ann Phys 28:60–115; (1964) 29:378–382Google Scholar
  18. 18.
    Hazi A (1979) Phys Rev A 19:920–922Google Scholar
  19. 19.
    Press WH, Flannery BP, Teukolsky SA, Vetterlin WT (1986) Numerical recipes. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Light JC, Walker RB (1976) J Chem Phys 65:4272–4282; Stechel EB, Walker RB, Light JC (1978) J Chem Phys 69:3518–3531Google Scholar
  21. 21.
    Dickinson AS (1974) Mol Phys 28:1085–1089Google Scholar
  22. 22.
    Rush DG (1968) Trans Faraday Soc 64:2013–2016Google Scholar
  23. 23.
    Truhlar DG (1972) Chem Phys Let 15:483–485Google Scholar
  24. 24.
    Truhlar DG (1974) Chem Phys Let 26:377–380Google Scholar
  25. 25.
    Ford KW, Hill DL, Wakano M, Wheeler JA (1959) Ann Phys 7:239–258Google Scholar
  26. 26.
    Newton RG (1982) Scattering theory of waves and particles, 2nd edn. Springer, New York Heidelberg BerlinGoogle Scholar
  27. 27.
    Anderson RW (1982) J Chem Phys 77:4431–4440Google Scholar
  28. 28.
    Kołos W, Wolniewicz L (1965) J Chem Phys 43:2429–2441Google Scholar
  29. 29.
    LeRoy RJ, Bernstein RB (1968) J Chem Phys 49:4312–4321Google Scholar
  30. 30.
    Kołos W, Wolniewicz L (1964) J Chem Phys 41:3663–3673Google Scholar
  31. 31.
    Bishop DM, Shih S-K (1986) J Chem Phys 64:162–169Google Scholar
  32. 32.
    Menzinger M (1971) Chem Phys Let 10:507–509Google Scholar
  33. 33.
    Walkauskas LP, Kaufman F (1976) J Chem Phys 64:3885–3886Google Scholar
  34. 34.
    Stwalley WC (1970) Chem Phys Let 6:241–244Google Scholar
  35. 35.
    Dabrowski I (1984) Can J Phys 62:1639–1664Google Scholar
  36. 36.
    Guzman R, Rabitz H (1987) J Chem Phys 86:1387–1394Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • David W. Schwenke
    • 1
  1. 1.Eloret InstitutePalo AltoUSA

Personalised recommendations