Advertisement

Journal of Protein Chemistry

, Volume 8, Issue 5, pp 629–646 | Cite as

Primary structure of hemoglobin α-chain ofColumba livia (gray wild pigeon)

  • Chand Sultana
  • Atiya Abbasi
  • Zafar H. Zaidi
Articles

Abstract

Primary structure of hemoglobin of α-chain ofColumba livia is presented. The separation of α-chain was obtained from globin by ion-exchange chromatography (CMC-52) and reversed-phase HPLC (RP-2 column). Amino acid sequence of intact as well as tryptic digested chain was determined on gas-phase sequencer. Structure is aligned homologously with 21 other species. Among different exchanges, positions α24 (Tyr→Leu), α26 (Ala→Gly), α32 (Met→Leu), α64 (Asp→Glu), α113 (Leu→Phe), and α129 (Leu→Val) are unique to pigeon hemoglobin. The various exchanges in α-chain are discussed with reference to evolution and phylogeny. The results show that the order Columbiformes is evolutionarily closer to the order Anseriformes. Since the pigeon is homogeneous, having HbA (αA-chain) and lacks αD-chain, its phylogenetic placement could be established among birds having single hemoglobin components.

Key words

Primary structure α-chain hemoglobin Columbiformes evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, H., Braunitzer, G., Oberthur, W., Kosters, J., and Grimm, F. (1985).Biol. Chem. Hoppe Seyler,366, 1141–1148.Google Scholar
  2. Brown, L., and Ingram, V. (1974).J. Biol. Chem. 249, 3960–3972.Google Scholar
  3. Braunitzer, G., Gehring-Muller, R., Hilschmann, M., Hilse, K., Hobbor, G., Rudolff, V., and Wittmann-Liebold, B. (1961).Hoppe Seyler's Z. Phisiol. Chem. 325, 283–286.Google Scholar
  4. Braunitzer, G. and Godovac-Zimmermann, J. (1982).Hoppe Seyler's Z. Physiol. Chem. 363, 581–590.Google Scholar
  5. Crestfield, A. M., Moore, S., and Stein, W. H. (1963).J. Biol. Chem. 238, 622–627.Google Scholar
  6. Chang, J. Y., Bauer, D., and Wittman-Liebold, B. (1978).FEBS Lett. 93, 205–214.Google Scholar
  7. Drabkin, D. L. (1964).J. Biol. Chem. 164, 703.Google Scholar
  8. Edman, P., and Begg, G. (1967).Eur. J. Biochem. 1, 80–91.Google Scholar
  9. Erbil, C., and Niessing, J. (1982).Gene 20, 211–217.Google Scholar
  10. Godovac-Zimmermann, J., and Braunitzer, G. (1983).Hoppe Seyler's Z. Physiol. Chem. 364, 665–674.Google Scholar
  11. Godovac-Zimmermann, J., and Braunitzer, G. (1984).Hoppe Seyler's Z. Physiol. Chem. 365, 1107–1113.Google Scholar
  12. Godovac-Zimmermann, J., and Braunitzer, G. (1985).Biol. Chem. Hoppe Seyler. 366, 503–508.Google Scholar
  13. Hirs, C. H. W. (1967).Methods Enzymol. 11, 218–220.Google Scholar
  14. Hiebl, I., Schneeganss, D., Grimm, F., Kosters, J., and Braunitzer, G. (1987).Biol. Chem. Hoppe Seyler 368, 11–18.Google Scholar
  15. Hiebl, I., Kosters, J., and Braunitzer, G. (1987).Biol. Chem. Hoppe Seyler,368, 333–342.Google Scholar
  16. Islam, A., Beg, O. U., Persson, B., Zaidi, Z. H., and Jornvall, H. (1988).J. Protein Chem. 7, 561–569.Google Scholar
  17. Leclercq, F., Schnek, A. G., Braunitzer, G., and Stangl A. (1981).Hoppe Seyler's Z. Physiol. Chem. 362, 1151–1158.Google Scholar
  18. Laemmli, U. K. (1979).Nature 227, 680–685.Google Scholar
  19. Matsuda, G., Maita, T., Mizuno, K., and Ota, H. (1973).Nature New Biology 244, 244.Google Scholar
  20. Monier, C., Schnek, A. G., Dirkx, J., and Leonis, J. (1973).Comp. Biochem. Physiol. 44A, 711–718.Google Scholar
  21. Moore, S., and Stein, W. H. (1948).Ann. N.Y. Acad. Sci. 49, 265–278.Google Scholar
  22. Oberthur, W., Braunitzer, G., and Kalas, S. (1981).Hoppe Seyler's Z. Physiol. Chem. 362, 1101–1112.Google Scholar
  23. Oberthur, W., Godovac-Zimmermann, J., and Braunitzer, G. (1982).Hoppe Seyler's Z. Physiol. Chem. 363, 777–787.Google Scholar
  24. Oberthur, W., Wiesner, H., and Braunitzer, G. (1983).Hoppe Seyler's Z. Physiol. Chem. 364, 51–59.Google Scholar
  25. Oberthur, W., Braunitzer, G., Grimm, F., and Kosters, J. (1983).Hoppe Seyler's Z. Physiol. Chem. 364, 851–858.Google Scholar
  26. Oberthur, W., Braunitzer, G., Baumann, R., and Wright, P. G. (1983).Hoppe Seyler's Z. Physiol. Chem. 364, 119–134.Google Scholar
  27. Oberthur, W., and Braunitzer, G. (1984).Hoppe Seyler's Z. Physiol. Chem.,365, 159–173.Google Scholar
  28. Paul, C., Vandecasserie, C., Fraboni, A., Depreter, J., Leonis, J. and Schnek, A. G. (1978). InInteraction Moléculaires de l'Hémoglobine, Collogue de l'INSERM Paris (Labie, D., Poyart, F., and Rosa, I., eds.) pp. 183–200, Editions INSERM Paris.Google Scholar
  29. Perutz, M. F. (1979).Ann. Rev. Biochem. 48, 327–386.Google Scholar
  30. Peterson, E. A., and Sober, H. A. (1959).Analyt. Chem. 31, 857–862.Google Scholar
  31. Rovera, G., Magarian, C., and Borus, T. W. (1978).Analytical Biochem. 85, 506–518.Google Scholar
  32. Rossi-Fanelli, A., and Antonini, E. (1958).Biochim. Biophys. Acta 30, 608–615.Google Scholar
  33. Schnek, A. G., Paul, C., and Vandecasserie, C. (1978). InChemical Zoology (Florkin, M., and Scheer, B. T., eds.), Vol. 10, Academic Press, New York, pp. 359–381.Google Scholar
  34. Schneeganss, D., Braunitzer, G., Oberthur, W., Kosters, J., and Grimm, F. (1985).Biol. Chem. Hoppe Seyler 366, 893–899.Google Scholar
  35. Von Bahr-Lindstorm, H., Hempel, J., and Jornvall, H. (1982).J. Protein Chem. 1, 257–262.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Chand Sultana
    • 1
  • Atiya Abbasi
    • 1
  • Zafar H. Zaidi
    • 1
  1. 1.HEJ Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations