Advertisement

Journal of Protein Chemistry

, Volume 10, Issue 5, pp 535–552 | Cite as

An energetic evaluation of a “Smith” collagen microfibril model

  • James M. Chen
  • Chun E. Kung
  • Stephen H. Feairheller
  • Eleanor M. Brown
Article

Abstract

An energy minimized three-dimensional structure of a collagen microfibril template was constructed based on the five-stranded model of Smith (1968), using molecular modeling methods and Kollman force fields (Weiner and Kollman, 1981). For this model, individual molecules were constructed with three identical polypeptide chains ((Gly-Pro-Pro) n , (Gly-Prop-Hyp) n , or (Gly-Ala-Ala) n , wheren=4, 12, and 16) coiled into a right-handed triple-helical structure. The axial distance between adjacent amino acid residues is about 0.29 nm per polypeptide chain, and the pitch of each chain is approximately 3.3 residues. The microfibril model consists of five parallel triple helices packed so that a left-handed superhelical twist exists. The structural characteristics of the computed microfibril are consistent with those obtained for collagen by X-ray diffraction and electron microscopy. The energy minimized Smith microfibril model for (Gly-Pro-Pro)12 has an axial length of about 10.2 nm (for a 36 amino acid residue chain), which gives an estimated D-spacing (234 amino acids per chain) of approximately 66.2 nm. Studies of the microfibril models (Gly-Pro-Pro)12, (Gly-Pro-Hyp)12, and (Gly-Ala-Ala)12 show that nonbonded van der Waals interactions are important for microfibril formation, while electrostatic interactions contribute to the stability of the microfibril structure and determine the specificity by which collagen molecules pack within the microfibril.

Key words

Triple helix fibril coiled-coil telopeptide cross-linking, molecular modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bear, R. (1942).J. Am. Chem. Soc. 64, 727.Google Scholar
  2. Berg, R. A., and Prockop, D. J. (1973).Biochem. Biophys. Res. Comm. 52, 115–120.Google Scholar
  3. Bhatnagar, R. S., Pattabingman, N., Sorensen, K. R., Langridge, R., MacElroy, R. D., and Renugopalakrishnan V. (1982).J. Biomol. Struct. Dynam. 104, 6424–6434.Google Scholar
  4. Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F. (1982).J. Am. Chem. Soc. 104, 6424–6434.Google Scholar
  5. Bouteille, M., and Pease, D. C. (1971).J. Ultrastruct. Res. 35, 311–338.Google Scholar
  6. Brodsky, B., and Eikenberry, E. (1985). InAnnals of the New York Academy of Science: Biology, Chemistry and Pathology of Collagen, Vol. 460 (Fleischmajer, R., Olsen, B. R., Kuhn, K., eds.), The New York Academy of Sciences, New York, pp. 73–85.Google Scholar
  7. Brodsky, B., Eikenberry, E. F., Belbruno, K., and Sterling, K. (1982).Biopolymers 21, 935–951.Google Scholar
  8. Capaldi, M. J., and Chapman, J. A. (1982).Biopolymers 21, 2291–2313.Google Scholar
  9. Chapman, J. A. (1984). InConnective Tissues Matrix: Topics in Molecular and Structural Biology, Vol. 5 (Hukins, D. W. L., ed.), Verlag Chemie Weinheim, pp. 89–132.Google Scholar
  10. Chapman, J. A., and Hulmes, D. J. S. (1984). InUltrastructure of the Connective Tissue Matrix (Ruggeri, A., Motta, P. M., eds.), Martinus Nijihoff Publishers, Boston, pp. 1–33.Google Scholar
  11. Chew, M. W. K., and Squire, J. M. (1986).J. Biol. Macromol. 8, 27–36.Google Scholar
  12. Eikenberry, E. F., and Brodsky, B. (1980).J. Mol. Biol. 144, 397–404.Google Scholar
  13. Fietzek, P. P., and Kuhn, K. (1976). InInternational Review of Connective Tissue Research, Vol. 7 (Hall, D., and Jackson, D. S., eds.), Academic Press, New York, pp. 1–60.Google Scholar
  14. Fraser, R. D. B., MacRae, T. P., and Miller, A. (1987).J. Mol. Biol. 193, 115–125.Google Scholar
  15. Fraser, R. D. B., MacRae, T. P., Miller, A., and Suzuki, E. (1983).J. Mol. Biol. 167, 497–521.Google Scholar
  16. Fraser, R. D. B., Miller, A., and Parry, D. A. D. (1974).J. Mol. Biol. 83, 281–283.Google Scholar
  17. Galloway, J. (1984).TIBS 9, 233–238.Google Scholar
  18. Giraud-Guille, M.-M. (1987).Mol. Cryst. Liq. Cryst. 153, 15–30.Google Scholar
  19. Gordon, M. K., Gerecke, D. R., Dublet, B., Van Der Rest, M., Sugrue, S. P., and Olsen, B. R. (1990). InAnnals of the New York Academy of Science: Structure, Molecular Biology and Pathology of Collagen, Vol. 580 (Fleischmajer, R., Olsen, B. R., Kuhn, K., eds.), The New York Academy of Sciences, New York, pp. 8–16.Google Scholar
  20. Helseth, Jr., D. L., Lechner, J. H., and Veis, A. (1979).Biopolymers 18, 3005–3014.Google Scholar
  21. Hodge, A. J., and Petruska, A. J. (1963). InAspects of Protein Structure (Ramachandran, G. N., ed.), Academic Press, London, pp. 289–300.Google Scholar
  22. Hofmann, H., Fietzek, P. P., and Kuhn, K. (1978).J. Mol. Biol. 125, 137–165.Google Scholar
  23. Hosemann, R., Dressig, W., and Nemetschek, Th. (1974).J. Mol. Biol. 83, 275–280.Google Scholar
  24. Hulmes, D. J. S., Holmes, D. F., and Cummings, C. (1985).J. Mol. Biol. 183, 473–477.Google Scholar
  25. Hulmes, D. J. S., Jesior, J.-C., Miller, A., Berthet-Colominas, C., and Wolff, C. (1981).Proc. Natl. Acad. Sci. USA 78, 3567–3571.Google Scholar
  26. Hulmes, D. J. S., and Miller, A. (1979).Nature 282, 878–880.Google Scholar
  27. Hulmes, D. J. S., and Miller, A. (1981).Nature 293, 239–240.Google Scholar
  28. Jelinski, L. W., Sullivan, C. E., and Torchia, D. A. (1980).Nature 284, 531–534.Google Scholar
  29. Kranck, H., Bernengo, J. C., and Vasilescu, D. (1982).Appl. Phys. Commun. 2, 189–202.Google Scholar
  30. Lee, D. D., and Glimcher, M. J. (1991).J. Mol. Biol. 217, 487–501.Google Scholar
  31. Lees, S., Pineri, M., and Escoubes, M. (1984).Int. J. Biol. Macromol. 6, 133–136.Google Scholar
  32. Martin, G. R., Timpl, R., Muller, P. K., and Kuhn, K. (1985).TIBS 10, 285–287.Google Scholar
  33. Meek, K. M., Chapman, J. A., and Hardcastle, R. A. (1979).J. Biol. Chem. 254, 10,710–10,714.Google Scholar
  34. Miller, A. (1982).TIBS 7, 13–18.Google Scholar
  35. Miller, A. (1976). InBiochemistry of Collagen (Ramachandran, G. N., and Reddi, A. H., eds.), Plenum Press, New York, pp. 85–136.Google Scholar
  36. Miller, A., and Parry, D. A. D. (1973).J. Mol. Biol. 75, 441–447.Google Scholar
  37. Miller, A., and Wray, J. S. (1971).Nature 230, 437–439.Google Scholar
  38. Miller, E. J. (1985). InAnnals of the New York Academy of Sciences: Biology, Chemistry and Collagen, Vol. 460 (Fleischmajer, R., Olsen, B. R., and Kuhn, K., eds.), The New Academy of Sciences, New York, pp. 1–13.Google Scholar
  39. Miller, M. H., Nemethy, G., and Scheraga, H. A. (1980).Macromol. 13, 470–478.Google Scholar
  40. Miller, M. H., and Scheraga, H. A. (1976).J. Polymer Sci. Symp. 54, 171–200.Google Scholar
  41. Na, G. C., Butz, L. J., and Carroll, R. J. (1986a).J. Biol. Chem. 261, 12,290–12,299.Google Scholar
  42. Na, G. C., Butz, L. J., Bailey, D. G., and Carroll, R. J. (1986b).Biochemistry 25, 958–966.Google Scholar
  43. Nemethy, G., and Scheraga, H. A. (1989).Bull. Inst. Chem. Res. 66, 398–408.Google Scholar
  44. Nemethy, G., and Scheraga, H. A. (1984).Biopolymers 23, 2781–2799.Google Scholar
  45. Nemethy, G., and Scheraga, H. A. (1986).Biochemistry 25, 3184–3188.Google Scholar
  46. Okuyama, K., Arnott, S., Takayanagi, M., and Kakudo, M. (1981).J. Mol. Biol. 152, 427–443.Google Scholar
  47. Okuyama, K., Nobuhiro, G., and Takayanagi, M. (1978).Chem. Lett. 509–512.Google Scholar
  48. Okuyama, K., Tanaka, N., Ashida, T., Kakudo, M., Sakakibara, S., and Kishida, Y. (1972).J. Mol. Biol. 72, 571–576.Google Scholar
  49. Olsen, B. R., Berg, R. A., Sakakibara, S., Kishida, Y., and Prockop, D. J. (1971).J. Mol. Biol. 57, 589–595.Google Scholar
  50. Parry, D. A. D., and Craig, A. S. (1979).Nature 282, 213–215.Google Scholar
  51. Piez, K. A. (1984). InExtracellular Matrix Biochemistry (Piez, K. A., and Reddi, A. H. eds.), Elsevier, New York, pp. 1–39.Google Scholar
  52. Piez, K. A., and Trus, B. L. (1981).Biosci. Rep. 1, 801–810.Google Scholar
  53. Piez, K. A., and Trus, B. L. (1977).J. Mol. Biol. 110, 701–704.Google Scholar
  54. Piez, K. A., and Trus, B. L. (1978).J. Mol. Biol. 122, 419–432.Google Scholar
  55. Prockop, D. J. (1990).J. Biol. Chem. 265, 15,349–15,352.Google Scholar
  56. Ramachandran, G. N., and Ramakrishnan, C. (1976). InBiochemistry of Collagen (Ramachandran, G. N., ed.) Plenum Press, New York, pp. 45–84.Google Scholar
  57. Rich, A., and Crick, F. H. C. (1961).J. Mol. Biol. 3, 483–506.Google Scholar
  58. Rich, A., and Crick, F. H. C. (1955).Nature 176, 915–916.Google Scholar
  59. Ripamonti, A., Roveri, N., Braga, D., Hulmes, D. J. S., Miller, A., and Timmins, P. A. (1980).Biopolymers 19, 965–975.Google Scholar
  60. Sakaibara, S., Kishida, Y., Okuyama, K., Tanaka, N., Ashida, T., and Kakudo, M. (1972).J. Mol. Biol. 65, 371–373.Google Scholar
  61. Scheraga, H. A. (1984).Carlsberg Res. Commun. 49, 1–55.Google Scholar
  62. Schmitt, F. O., and Gross, J. (1948).J. Am. Leather Chem. Assoc. 43, 658–675.Google Scholar
  63. Smith, J. W. (1968).Nature 219, 157–158.Google Scholar
  64. Squire, J. M., and Freundlich, A. (1980).Nature 288, 410–413.Google Scholar
  65. Suzuki, E., Fraser, R. D. B., and MacRae, T. P. (1980).Int. J. Biol. Macromol. 2, 54–56.Google Scholar
  66. SYBYL MENDYL, (1990).Macromolecular Modeling Software, version 5.32, TRIPOS Associates, Inc.Google Scholar
  67. Torbet, J., and Ronziere, M. C. (1984).Biochem. J. 219, 1057–1059.Google Scholar
  68. Torchia, D. A., Hiyama, Y., Sarkar, S. E., and Sullivan, C. E. (1985).Biopolymers 24, 65–75.Google Scholar
  69. Torchia, D. A., and Vanderhart, D. L., (1976).J. Mol. Biol. 104, 315–321.Google Scholar
  70. Traub, W. (1978).FEBS Lett. 92, 114–120.Google Scholar
  71. Trus, B. L., and Piez, K. A. (1976).J. Mol. Biol. 108, 705–732.Google Scholar
  72. Umemura, S., Sakamoto, M., Hayakawa, R., and Wada, Y. (1979).Biopolymers 18, 25–34.Google Scholar
  73. Veis, A., Miller, A., Leibovich, S. J., and Traub, W. (1979).Biochim. Biophys. Acta 576, 88–98.Google Scholar
  74. Veis, A., and Yuan, L. (1975).Biopolymers 14, 895–900.Google Scholar
  75. Weiner, P. K., and Kollman, P. A. (1981).J. Comp. Chem. 2, 287–303.Google Scholar
  76. Weiner, S. J., Kollman, P. A., Case D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., and Weiner, P. A. (1984).J. Am. Chem. Soc. 106, 765–784.Google Scholar
  77. Woodhead-Galloway, J. (1984). InConnective Tissue Matrix: topics in Molecular and Structural Biology, Vol. 5 (Hukins, D. W. L., ed.) Verlag Chemie, Weinheim, pp. 133–160.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • James M. Chen
    • 1
  • Chun E. Kung
    • 1
  • Stephen H. Feairheller
    • 1
  • Eleanor M. Brown
    • 1
  1. 1.U.S. Department of AgricultureARS, Eastern Regional Research CenterPhiladelphia

Personalised recommendations