Advertisement

Journal of Protein Chemistry

, Volume 2, Issue 5, pp 371–381 | Cite as

Fluorescence investigations of coenzyme and substrate interactions in mannitol-1-phosphate dehydrogenase ofEscherichia coli

  • Richard A. Cerione
  • Theodore ChaseJr.
Article
  • 58 Downloads

Abstract

Coenzyme and substrate interactions with mannitol-1-phosphate dehydrogenase fromEscherichia coli (a dimer of MW 45,000) have been studied by fluorescence spectroscopy. NAD+ quenches the fluorescence emission of the protein tryptophan residues; shifting the excitation wavelength from 280 to 290 nm results in an increase in this quenching and a red shift in the emission maximum. NAD+ also quenches the fluorescence of covalently attached pyridoxyl phosphate, and this quenching is accompanied by a spectral broadening above 425 nm. Fructose-6-phosphate increases the binding of NAD+, but causes a slight reduction in the quenching of the tryptophan fluorescence observed at saturating levels of coenzyme, and reverses the NAD+-induced broadening in the pyridoxyl phosphate emission spectrum. NADH quenches the protein emission much less than NAD+; this quenching is not changed by shifting the excitation wavelength and is not affected by the presence of bound mannitol-1-phosphate. Titrations monitoring the quenching by NADH indicate a single class of NADH binding sites, while titrations monitoring NADH fluorescence suggest that coenzyme fluorescence is more enhanced when NADH is bound to less than half of the total enzyme subunits, with the emission per NADH molecule bound decreasing as the number of NADH molecules bound increases. In the absence of coenzyme, neither fructose-6-phosphate nor mannitol-1-phosphate have any effect on the protein tryptophan emission; however, both substrates induce specific changes in the emission spectrum of covalently attached pyridoxyl phosphate. These results suggest that the different coenzymes and substrates cause specific conformational changes in mannitol-1-phosphate dehydrogenase.

Key words

dehydrogenase mannitol-1-phosphate fluorescence fructose-6-phosphate mannitol-1-phosphate pyridoxal-5-phosphate nicotinamide adenine dinucleotide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, M. A., Biellmann, J.-F., Wiget, P., Joppich-Kuhn, R., and Luisi, P. L. (1978).Eur. J. Biochem. 89, 397–405.Google Scholar
  2. Bernhard, S. A., Pfenninger, O., Malhotra, O. P., and Schwendimann, B. (1978). in Sund, H., ed.,Pyridine Nucleotide-Dependent Dehydrogenases, W. de Gruyter, Elmsford, New York, pp. 118–131.Google Scholar
  3. Boyer, P., and Theorell, H. (1956).Acta Chem. Scand. 10, 447–450.Google Scholar
  4. Brand, L., and Witholt, B. (1967). InMethods in Enzymology, Vol. 11, Academic Press, New York, pp. 776–856.Google Scholar
  5. Cerione, R. A., and Chase, T. Jr. (1983).J. Protein Chem., this issue, following paper.Google Scholar
  6. Chandrasekhar, K., McPherson, A., Adams, M. J., and Rossmann, M. G. (1973).J. Mol. Biol. 76, 503–518.Google Scholar
  7. Chase, T. (1984). Submitted for publication.Google Scholar
  8. Chase, T., Jr., and Lucek, R. F. (1974).Fed. Proc. Fed. Am. Soc. Exp. Biol. 33, 1237.Google Scholar
  9. Davis, B. J. (1964).Ann. N. Y. Acad. Sci. 121, 404–427.Google Scholar
  10. Drum, D. E., Li, T.-K., and Vallee, B. L. (1969).Biochemistry 8, 3783–3791.Google Scholar
  11. Eberhardt, N. L., and Wolfe, R. G. (1975).J. Biol. Chem. 250, 2987–2992.Google Scholar
  12. Fox, J. B., and Dandliker, W. (1956).J. Biol. Chem. 218, 53–57.Google Scholar
  13. Gafni, A. (1978).Biochemistry 17, 1301–1304.Google Scholar
  14. Heitz, J. R., and Brand, L. (1971).Biochemistry 10, 2695–2700.Google Scholar
  15. Holbrook, J. J., Liljas, A., Steindel, S. J., and Rossmann, M. G. (1975).Enzymes 11, 191–292.Google Scholar
  16. Iweibo, I., and Weiner, H. (1972).Biochemistry 11, 1010–1018.Google Scholar
  17. Kiser, R. C., and Niehaus, W. G., Jr. (1981).Arch. Biochem. Biophys. 211, 613–621.Google Scholar
  18. Koren, R., and Hammes, G. G. (1975).Biochemistry 14, 1021–1025.Google Scholar
  19. Koshland, D. E., Jr., and Neet, K. (1968).Annu. Rev. Biochem. 37, 359–410.Google Scholar
  20. Klungsøyr, L. (1966).Biochim. Biophys. Acta 128, 55–62.Google Scholar
  21. Klungsøyr, L. (1967).Biochim. Biophys. Acta 146, 10–17.Google Scholar
  22. Klungsøyr, L. (1969).Anal. Biochem. 27, 91–98.Google Scholar
  23. Lodola, A., Spragg, S. P., and Holbrook, J. J. (1978).Biochem. J. 169, 577–588.Google Scholar
  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.Google Scholar
  25. Luisi, P. L., Olomucki, A., Baici, A., and Karlovic, O. (1973).Biochemistry 12, 4100–4106.Google Scholar
  26. Marquardt, D. W. (1963).J. Soc. Ind. Appl. Math. 11, 431–441.Google Scholar
  27. Means, G. E., and Feeney, R. E. (1971).Chemical Modification of Proteins, Holden-Day, San Francisco, p. 134.Google Scholar
  28. Parker, C. A., and Barnes, W. J. (1957).Analyst 82, 606–618.Google Scholar
  29. Peterson, E. A., and Sober, H. A. (1954).J. Am. Chem. Soc. 76, 169–175.Google Scholar
  30. Rosenberg, A., Yonetani, T., and Theorell, H. (1965).Arch. Biochem. Biophys. 110, 413–421.Google Scholar
  31. Schachter, H., Sarney, J., McGuire, E. J., and Roseman, S. (1969).J. Biol. Chem. 244, 4785–4792.Google Scholar
  32. Shore, J. D., Gutfreund, H., and Yates, D. (1975).J. Biol. Chem. 250, 5276–5277.Google Scholar
  33. Ueng, E. T. H., and McGuinness, E. T. (1977).Biochemistry 16, 107–111.Google Scholar
  34. Van Holde, K. E. (1971).Physical Biochemistry, Prentice-Hall, Englewood Cliffs, New Jersey, p. 60.Google Scholar
  35. Velick, S. F. (1958).J. Biol. Chem. 233, 1455–1467.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • Richard A. Cerione
    • 1
  • Theodore ChaseJr.
    • 1
  1. 1.Department of Biochemistry and Microbiology, Cook CollegeRutgers-The State University, New Jersey Agricultural Experiment StationNew Brunswick

Personalised recommendations