Advertisement

Journal of Protein Chemistry

, Volume 3, Issue 5–6, pp 445–454 | Cite as

The myoglobin of rodents:Lagostomus maximus (viscacha) andSpalax ehrenbergi (mole rat)

  • Anne M. Gurnett
  • James P. O'Connell
  • David E. Harris
  • Hermann Lehmann
  • Kenneth A. Joysey
  • Eviatar Nevo
Article

Abstract

The primary sequences of the myoglobins of two rodents (the South American viscacha and the Mediterranean mole rat) have been determined. Both myoglobins exhibit one polymorphism. The two rodent sequences have been compared with each other and with other known myoglobins. The myoglobin of the viscacha is similar to those of the diving mammals and penguin in having a high arginine content. Among mammalian sequences, the arginines at positions 77 (in one of the viscacha myoglobins) and 79 have been found only in the myoglobin from viscacha. Mole rat myoglobin has a lysine at position 31, where arginine or serine is found in all other known vertebrate myoglobins.

Key words

amino acid sequence myoglobin rodents viscacha mole rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang, J. Y., Brauer, D., and Wittmann-Liebold, B. (1978).FEBS Lett. 93, 205–214.Google Scholar
  2. Chang, J. Y., Knecht, R., and Braun, D. G. (1981).Biochem. J. 199, 547–555.Google Scholar
  3. Clegg, J. B., Naughton, M. A., and Weatherall, D. J. (1966).J. Mol. Biol. 19, 91–108.Google Scholar
  4. Dene, H., Goodman, M., and Romero-Herrera, A. E. (1980).Proc. R. Soc. Lond. B 207, 111–127.Google Scholar
  5. Dene, H., Goodman, M., Walz, D. A., and Romero-Herrera, A. E. (1983).Hoppe-Seyler's Z. Physiol. Chem. 364, 1585–1595.Google Scholar
  6. Dixon, H. B. F., and Perham, R. N. (1968).Biochem. J. 109, 312–314.Google Scholar
  7. Goodman, M., Romero-Herrera, A. E., Dene, H., Czelusniak, J., and Tashian, R. E. (1982). InMacromolecular Sequences in Systematics and Evolutionary Biology (Goodman, M., ed.), Plenum Press, New York, pp. 115–191.Google Scholar
  8. Gray, W. R. (1972).Meth. Enzymol. 25, 333–344.Google Scholar
  9. Gurnett, A. M. (1983). Ph.D. Thesis, University of Cambridge.Google Scholar
  10. Gurnett, A. M., O'Connell, J. P., and Lehmann, H. (1984). InBrussels Hemoglobin Symposium (Schnek, A. G., and Paul, C., eds.), Editions de l'Université de Bruxelles, Brussels, pp. 467–471.Google Scholar
  11. Heinbokel, N., and Lehmann, H. (1984).FEBS Lett. 165, 46–50.Google Scholar
  12. Joysey, K. A. (1984). InBrussels Hemoglobin Symposium (Schnek, A. G., and Paul, C., eds.), Éditions de l'Université de Bruxelles, Brussels, pp. 479–485.Google Scholar
  13. Kleinschmidt, T., Nevo, E., and Braunitzer, G. (1984).Hoppe-Seyler's Z. Physiol. Chem. 365, 531–537.Google Scholar
  14. Laemmli, U. K. (1970).Nature 227, 680–685.Google Scholar
  15. Lehmann, H., and Huntsman, R. G. (1974).Man's Haemoglobins, North-Holland, Amsterdam, pp. 431–448.Google Scholar
  16. Mahoney, W. C., and Hermodson, M. A. (1980).J. Biol. Chem. 255, 11199–11203.Google Scholar
  17. Nevo, E. (1982). InMechanisms of Speciation (Barigozzi, C., ed.), Alan R. Liss, Inc., New York, pp. 191–218.Google Scholar
  18. Romero-Herrera, A. E., Lehmann, H., Joysey, K. A., and Friday, A. E. (1978).Phil. Trans. R. Soc. B 283, 61–163.Google Scholar
  19. Takano, T. (1977).J. Mol. Biol. 110, 537–568.Google Scholar
  20. Wahrman, J., Goitein, R., and Nevo, E. (1969).Science 164, 82–83.Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • Anne M. Gurnett
    • 1
  • James P. O'Connell
    • 1
  • David E. Harris
    • 1
  • Hermann Lehmann
    • 1
  • Kenneth A. Joysey
    • 2
  • Eviatar Nevo
    • 3
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeEngland
  2. 2.University Museum of ZoologyCambridgeEngland
  3. 3.Institute of EvolutionUniversity of HaifaHaifaIsrael

Personalised recommendations