Advertisement

Journal of Protein Chemistry

, Volume 11, Issue 5, pp 561–570 | Cite as

Primary structure of carboxypeptidase T: Delineation of functionally relevant features in Zn-carboxypeptidase family

  • A. L. Osterman
  • N. V. Grishin
  • S. V. Smulevitch
  • M. V. Matz
  • O. P. Zagnitko
  • L. P. Revina
  • V. M. Stepanov
Article

Abstract

The primary structure of carobxypeptidase T—a Zn-dependent extracellular enzyme ofThermoactinomyces vulgaris—was determined from the clonedcpT gene nucleotide sequence and compared to Zn-carboxypeptidases from various organisms. The compilation and analysis of multiple alignment accompanied by consideration of available tertiary structure data have shown that in the overall spatial structure and active site arrangement CpT is similar to other enzymes constituting the Zn-carboxypeptidase family. Nine of 16 amino acid residues found to be strictly invariant are presumably located close to the active site. The preservation of His69, Glu72, Asn144, Arg145, His196, Tyr248, and Glu270 identified previously as essential catalytic site participants implicates basically the same catalytic mechanism in the Zn-carboxy-peptidase family. It is proposed that Pro205 and Asp256 should play an important role in proper S1′-pocket spatial arrangement. The comparative analysis of amino acid variations in S1′-pocket enabled us to reveal structural determinants of the Zn-carboxypeptidase primary specificity. The relatively reduced size of the pocket and negative charge of Asp253 are supposed to contribute correspondingly to A- and B-type substrate preferences of carboxypeptidase T endowed with dual primary specificity.

Key words

Primary structure carboxypeptidase T carboxypeptidase family alignment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, N., Schechter, I., and Berger, A. (1967).Biochem. Biophys. Res. Commun. 29, 862–867.Google Scholar
  2. Bradshaw, R.A., Ericsson, L. H., Walsh, K. A., and Neurath, H. (1969).Proc. Natl. Acad. Sci. USA 63, 1389–1394.Google Scholar
  3. Breddam, K., Bazzone, T. J., Holmquist, B., and Vallee, B. L. (1979).Biochemistry 18, 1563–1570.Google Scholar
  4. Christianson, D. W., and Lipscomb, W. N. (1989).Acc. Chem. Res. 22, 62–69.Google Scholar
  5. Clauser, E., Gardell, S. J., Macdonald, R. J., Rutter, W. J., and Craik, C. S. (1988).J. Biol. Chem. 23, 7837–7845.Google Scholar
  6. Cole, K. R., Kumar, S., Trong, H. L., Woodbury, R. G., Walsh, K. A., and Neurath, H. (1991).Biochemistry 30, 648–655.Google Scholar
  7. Fricker, L. D., Esch, F. S., Evans, C. J., and Herbert, E. (1986).Nature 323, 461–464.Google Scholar
  8. Gardell, S. J., Craik, C. S., Clauser, E., Stewart, C. B., Rutter, W. J., and Graf, M. (1988).J. Biol. Chem. 263, 7828–7836.Google Scholar
  9. Gardell, S. J., Craik, C. S., Hilvert, D., Urdea, M. S., and Rutter, W. J. (1985).Nature 317, 551–555.Google Scholar
  10. Gebhard, W., Eulitz, M., and Schube, M. (1989).Eur. J. Biochem. 178, 603–607.Google Scholar
  11. Kim, H., and Lipscomb, W. N. (1990).Biochemistry 29, 5546–5555.Google Scholar
  12. Manser, E., Fernandez, D., Loo, L., Goh, P. Y., Monfries, C., Hall, C., and Lim, L. (1990).Biochem. J. 267, 517–525.Google Scholar
  13. Narahashi, Y. (1990).J. Biochem. 107, 879–886.Google Scholar
  14. Osterman, A. L., Stepanov, V. M., Rudenskaya, G. N., Khodova, O. M., Tsaplina, I. A., Yakovleva, M. V., and Loginova, L. G. (1984).Biochemistry-USSR 49, 292–301.Google Scholar
  15. Phillips, M. A., Fletterick, R., and Rutter, W. J. (1990).J. Biol. Chem. 265, 20,692–20,698.Google Scholar
  16. Polyakov, K. M., Obmolova, G. V., Kuranova, I. P., Strokopytov, B. V., Vainshtein, B. K., Mosolova, O. V., Stepanov, V. M., and Rudenskaya, G. N. (1989).Mol. Biol. (USSR) 23, 266–272.Google Scholar
  17. Rees, D. C., Lewis, M., and Lipscomb, W. N. (1983).J. Mol. Biol. 18, 367–387.Google Scholar
  18. Reynolds, D. S., Stevens, R. L., Serafin, W. E., Austen, K. F., and Gurley, D. S. (1989a).J. Biol. Chem. 264, 94–99.Google Scholar
  19. Reynolds, D. S., Gurley, D. S., Austen, K. F., Sugarbaker, D. J., and Stevens, R. L. (1989b).Proc. Natl. Acad. Sci. USA 86, 9480–9484.Google Scholar
  20. Rodriguez, C., Brayton, K. A., Brownstein, M., and Dikson, J. E. (1989).J. Biol. Chem. 264, 5988–5995.Google Scholar
  21. Schmid, M. F., and Harriott, J. R. (1976).J. Mol. Biol. 103, 175–190.Google Scholar
  22. Shoham, G., Oren, D. A., and Christianson, D. W. (1988).Proc. Natl. Acad. Sci. USA 85, 684–688.Google Scholar
  23. Smulevitch, S. V., Osterman, A. L., Galperina, O. V., Matz, M. V., Zagnitko, O. P., Kadyrov, R. M., Tsaplina, I. A., Grishin, N. V., Chestukhina, G. G., and Stepanov, V. M. (1991).FEBS Lett. 291, 75–78.Google Scholar
  24. Tabor, S., and Richardson, C. C. (1987).Proc. Natl. Acad. Sci. USA 84, 4767–4771.Google Scholar
  25. Tan, F. L., Steiner, D. F., Skidgel, R. A., Chan, S. J., and Schilling, J. W. (1989).J. Biol. Chem. 264, 3165–3170.Google Scholar
  26. Titani, K., Ericsson, L. H., Kumar, S., Jakob, F., Neurath, H., and Zwilling, R. (1984).Biochemistry 23, 1245–1250.Google Scholar
  27. Titani, K., Ericsson, L. H., Walsh, K. A., and Neurath, H. (1975).Proc. Natl. Acad. Sci. USA 72, 1666–1670.Google Scholar
  28. Yankovsky, N. K., Fonstein, M. Y., and Lashina, S. Y. (1989).Gene 81, 203–207.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. L. Osterman
    • 1
    • 2
  • N. V. Grishin
    • 2
  • S. V. Smulevitch
    • 1
  • M. V. Matz
    • 1
  • O. P. Zagnitko
    • 1
  • L. P. Revina
    • 1
  • V. M. Stepanov
    • 1
  1. 1.Laboratory of Protein ChemistryInstitute of Genetics and Selection of Industrial MicroorganismsMoscowRussia
  2. 2.Biology DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations