Journal of Protein Chemistry

, Volume 9, Issue 1, pp 75–82 | Cite as

On the mechanism of activation of protein kinase FA (an activating factor of ATP·Mg-dependent protein phosphatase) in brain myelin

  • Shiaw-Der Yang
  • Jau-Song Yu
  • Chih-Wei Hua


Protein kinase FA (an activating factor of ATP·Mg-dependent protein phosphatase) has been characterized to exist in two forms in the purified brain myelin. One form of kinase FA is spontaneously active and trypsin-labile, whereas the other form of kinase FA is inactive and trypsin-resistant, suggesting a different membrane topography with active FA exposed on the outer face of the myelin membrane and inactivu FQ buried within the myelin membrane. When myelin was solubilized in 1% Triton X-100, all kinase FA became active and trypsin-labile. Phospholipid reconstitution studies further indicated that when kinase FA was reconstituted in acidic phospholipids, such as phosphatidylinositol and phosphatidylserine, the enzyme activity was inhibited in a dose-dependent manner, suggesting that kinase FA interacts with acidic phospholipids which inhibit its activity. Furthermore, when myelin was incubated with exogenous phospholipase C, the inactive/trypsin-resistant FA could be converted to the active/trypsin-labile FA in a time- and dose-dependent manner. Taken together, it is concluded that membrane phospholipids play an important role in modulating the activity of kinase FA in the brain myelin. It is suggested that phospholipase C may mediate the activation-sequestration of inactive/trypsin-resistant kinase FA in the brain myelin through the phospholipase C-katalyzed degradation of acidic membrane phospholipids. The activation-sequestration of protein Kinase FA may represent one mode of control modulating the activity of kinase FA in the central nervous system myelin.

Key words

Protein kinase protein phosphatase brain myelin membranes phospholipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, H. C., Randle, C. L., and Agrawal, D. (1981).J. Biol. Chem. 256, 12243–12246.Google Scholar
  2. Agrawal, H. C., O'Connell, K., Randle, C. L., and Agrawal, D. (1982).Biochem. J. 201, 39–47.Google Scholar
  3. Cohen, P. (1973).Eur. J. Biochem. 34, 1–14.Google Scholar
  4. Czech, M. P., Klarlund, J. K., Yagaloff, K. A., Bradford, A. P., and Lewis, R. E. (1988).J. Biol. Chem. 263, 11017–11020.Google Scholar
  5. Denton, R. M., Brownsey, R. W., and Belsham, G. J. (1981).Diabetologia 21, 347–367.Google Scholar
  6. Depaoli-Roach, A. A. (1984).J. Biol. Chem. 259, 12144–12152.Google Scholar
  7. Desjardins, K. C., and Morell, P. (1983).J. Cell. Biol. 97, 438–446.Google Scholar
  8. Fischer, E. H., and Krebs, E. G. (1958).J. Biol. Chem. 231, 65–71.Google Scholar
  9. Hemmings, B. A., Yelloelees, D., Kernohan, J. C., and Cohen, P. (1981).Eur. J. Biochem. 119, 443–451.Google Scholar
  10. Hemmings, B. A., Aitken, A., Cohen, P., Raymond, M., and Hofman, F. (1982).Eur. J. Biochem. 127, 473–481.Google Scholar
  11. Ingebritsen, T. S., and Cohen, P. (1983).Science 221, 331–338.Google Scholar
  12. Jurgensen, S., Schacter, E., Huang, C. Y., Chock, P. B., Yang, S.-D., Vandenheede, J. R., and Merlevede, W. (1984).J. Biol. Chem. 259, 5864–5870.Google Scholar
  13. Krebs, E. G., Kent, A. B., and Fischer, E. H. (1958).J. Biol. Chem. 231, 73–83.Google Scholar
  14. Kinzel, V., and Kubler, D. (1976).Biochem. Biophys. Res. Commun. 71, 257–264.Google Scholar
  15. Lim Tung, H. Y., and Reed, L. J. (1989).J. Biol. Chem. 264, 2985–2990.Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.Google Scholar
  17. Martenson, R. E., Law, M. J., and Deibler, G. E. (1983).J. Biol. Chem. 258, 930–937.Google Scholar
  18. Rosen, O. M. (1987).Science 237, 1452–1458.Google Scholar
  19. Sibley, D. R., and Lefkowitz, R. J. (1985).Nature 317, 124–129.Google Scholar
  20. Sibley, D. R., Strasser, R. H., Benovic, J. L., Daniel, K., and Lefkowitz, R. J. (1986).Proc. Natl. Acad. Sci. USA 83, 9408–9412.Google Scholar
  21. Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J. (1987).Cell 48, 913–922.Google Scholar
  22. Stewart, A. A., Hemmings, B. A., Cohen, P., Goris, J., and Merlevede, W. (1981).Eur. J. Biochem. 115, 197–205.Google Scholar
  23. Tanuichi, M., Johnson, E. M., Roach, P. J. Jr., and Lawrence, J. C. Jr. (1986).J. Biol. Chem. 261, 13342–13349.Google Scholar
  24. Vandenheede, J. R., Yang, S.-D., Goris, J., and Merlevede, W. (1980).J. Biol. Chem. 255, 11768–11774.Google Scholar
  25. Villa-Moruzzi, E., Ballou, L. M., and Fischer, E. M. (1984).J. Biol. Chem. 259, 5857–5863.Google Scholar
  26. Yang, S.-D., Vandenheede, J. R., Goris, J., and Merlevede, W. (1980).J. Biol. Chem. 255, 11759–11769.Google Scholar
  27. Yang, S.-D., and Fong, Y.-L. (1985).J. Biol. Chem. 260, 13464–13470.Google Scholar
  28. Yang, S.-D. (1986).J. Biol. Chem. 261, 11786–11791.Google Scholar
  29. Yang, S.-D., Yu, J.-S., Liu, J.-S., Tzen, T.-C., and Wang, J.-K. (1987a).Biochem. Biophys. Res. Commun. 142, 38–46.Google Scholar
  30. Yang, S.-D., Liu, J.-S., Fong, Y.-L., Yu, J.-S., and Tzen, T.-C. (1987b).J. Neurochem. 48, 160–166.Google Scholar
  31. Yang, S.-D., Ho, L.-T., and Fung, T.-J. (1988).Biochem. Biophys. Res. Commun. 151, 61–69.Google Scholar
  32. Yang, S.-D. (1988).Asia Pacific Commun. Biochem. 2, 53–58.Google Scholar
  33. Yang, S.-D., Ho, L.-T., Fung, T.-J., and Yu, J.-S. (1989a).Biochem. Biophys. Res. Commun. 158, 762–768.Google Scholar
  34. Yang, S.-D., Chou, C.-K., Huang, M., Song, J.-S., and Chen, H.-C. (1989b).J. Biol. Chem. 264, 5407–5411.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Shiaw-Der Yang
    • 1
    • 2
  • Jau-Song Yu
    • 1
    • 2
  • Chih-Wei Hua
    • 1
    • 2
  1. 1.Institute of Life ScienceNational Tsing Hua UniversityHsinchu
  2. 2.Institute of Molecular Cell BiologyChang Gung Medical CollegeTao-YuanTaiwan, ROC

Personalised recommendations