Journal of Protein Chemistry

, Volume 9, Issue 1, pp 17–22 | Cite as

Fluorescence lifetime and rotational correlation time of bovine serum albumin-sodium dodecyl sulfate complex labeled with 1-dimethylaminonaphthalene-5-sulfonyl chloride: Effect of disulfide bridges in the protein on these fluorescence parameters

  • Kunio Takeda
  • Kazuo Yamamoto


A fluorescent dye, 1-dimethylaminonaphthalene-5-sulfonyl chloride, was used to label bovine serum albumin (BSA), intact and disulfide bridges-cleaved. The fluorescence lifetime and fluorescence anisotropy of the adducts in sodium dodecyl sulfate (SDS) solutions were studied by the nanosecond fluorescence depolarization method. The volume of equivalent sphere (Ve) was calculated to be 2.1×10−19 cm3 for BSA with the intact disulfide bridges from the rotational correlation time. The value ofVe was 4.4×10−19 cm3 for the disulfide bridges-cleaved BSA. With an increase in SDS concentration, the rotational correlation time of the intact BSA became longer, while that of the disulfide bridges-cleaved BSA became shorter. This suggests that upon the binding of SDS, the total volume of the intact BSA increases while the expanded state of the protein, caused by the cleavage of the disulfide bridges, becomes compact.

Key words

Bovine serum albumin sodium dodecyl sulfate fluorescence lifetime fluorescence anisotropy protein conformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batra, P. P., Sasa, K., Ueki, T., and Takeda, K. (1989).Biochem. Int., in press.Google Scholar
  2. Belford, G. G., Belford, R. L., and Weber, G. (1972).Proc. Natl. Acad. Sci. USA 69, 1392–1393.Google Scholar
  3. Brewer, J. M., Bastiaens, P., and Lee, J. (1987).Biophysical Chem. 28, 77–88.Google Scholar
  4. Brown, J. R. (1977). InAlbumin Structure, Function, and Uses (Rosenoer, V. M., Oratz, M., and Rothschild, M. A., eds.), Pergamon Press, Oxford, pp. 27–51.Google Scholar
  5. Chen, R. F. (1968).Arch. Biochem. Biophys. 128, 163–175.Google Scholar
  6. Dayhoff, M. O., Perlmann, G. E., and MacInnes, D. A. (1952).J. Am. Chem. Soc. 74, 2515–2517.Google Scholar
  7. Era, S., Nagaoka, S., Sogami, M., Watari, H., and Akasaka, K. (1985).Int. J. Peptide Protein Res. 26, 21–32.Google Scholar
  8. Hilak, M. C., Harmsen, B. J. M., Braam, W. G. M., Joordens, J. J. M., and Van Os, G. A. J. (1974).Int. J. Peptide Protein Res. 6, 95–101.Google Scholar
  9. Jones, M. N. (1975). InBiological Interfaces, Elsevier, Amsterdam, pp. 101–130.Google Scholar
  10. King, T. P. (1973).Arch. Biochem. Biophys. 156, 509–520.Google Scholar
  11. Kinosita, K., Jr., Ikegami, A., Yoshida, M., and Kagawa, Y. (1982).J. Biochem. 92, 2043–2046.Google Scholar
  12. Kuntz, I. D. (1971).J. Am. Chem. Soc. 93, 514–516.Google Scholar
  13. Lapanje, S. (1978). InPhysicochemical Aspects of Protein Denaturation, Wiley-Interscience, New York, pp. 156–179.Google Scholar
  14. Moser, P., Squire, P. G., and O'Konski, C. T. (1966).J. Phys. Chem. 70, 744–756.Google Scholar
  15. Peters, T., Jr. (1975). InThe Plasma Proteins, Vol. 1 (Putnam, F. W., ed.), Academic Press, New York, pp. 133–181.Google Scholar
  16. Peters, T., Jr., and Feldhoff, R. C. (1975).Biochemistry 14, 3384–3391.Google Scholar
  17. Reed, R. G., Feldhoff, R. C., and Peters, T., Jr. (1976).Biochemistry 15, 5394–5398.Google Scholar
  18. Squire, P. G., Moser, P., and O'Konski, C. T. (1968).Biochemistry 7, 4261–4272.Google Scholar
  19. Steiner, R. F., and Norris, L. (1987).Biopolymers 26, 1189–1204.Google Scholar
  20. Steinhardt, J., and Reynolds, J. A. (1969). InMultiple Equilibria in Proteins, Academic Press, New York, pp. 239–302.Google Scholar
  21. Takeda, K., Miura, M., and Takagi, T. (1981).J. Colloid Interface Sci. 82, 38–44.Google Scholar
  22. Takeda, K., Shigeta, M., and Aoki, K. (1987).J. Colloid Interface Sci. 117, 120–126.Google Scholar
  23. Takeda, K., Sasa, K., Kawamoto, K., Wada, A., and Aoki, K. (1988).J. Colloid Interface Sci. 124, 284–289.Google Scholar
  24. Takeda, K., Wada, A., Nishimura, T., Ueki, T., and Aoki, K. (1989).J. Colloid Interface Sci. 133, 497–504.Google Scholar
  25. Vos, K., van Hoek, A., and Visser, A. J. W. G. (1987).Eur. J. Biochem. 165, 55–63.Google Scholar
  26. Yguerabide, J. (1972).Methods Enzymol. 26, 498–578.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Kunio Takeda
    • 1
  • Kazuo Yamamoto
    • 1
  1. 1.Department of Applied ChemistryOkayama University of ScienceOkayamaJapan

Personalised recommendations