Journal of Protein Chemistry

, Volume 10, Issue 2, pp 151–160 | Cite as

Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus

  • W. S. Lane
  • A. Galat
  • M. W. Harding
  • S. L. Schreiber


FKBP, an 11.8 kD intracellular protein that binds the immunosuppressants FK506 (Kd=0.4 nM) and rapamycin (Kd=0.2 nM) with high affinity, was purified to homogeneity from calf thymus. The complete amino acid sequence has been determined by automated Edman degradation of the intact molecule and overlapping fragments generated by proteolytic and chemical cleavage. The analysis revealed a 107 amino acid peptide chain with the following sequence: GVQVETISPGDGRTFPKRGQTCVVHYTGMLEDGKKFDSSRDRNKPFKFVLGKQEVIRGWEEGVAQMSVGQRAKLTISPDYAYGATGHPGIIPPNATLIFDVELLKLE. The molecular weight, calculated from the amino sequence to be 11,778 D, was confirmed by electrospray ionization mass spectrometry. Thus, naturally isolated bovine FKBP does not appear to have any residues modified by glycosylation, phosphorylation, or other post-translational derivatization processes. Bovine FKBP has only three amino acid residues that differ from human FKBP, whose sequence was elucidated by cloning and sequencing complementary DNA (Standaertet al., 1990). The protein has a substantial number of hydrophilic peptide segments with prevalent β-strand type of chain fold. Understanding the biological function of FKBP and other members of the immunophilin class and their respective complexes with immunosuppressive drugs may provide insights into cytoplasmic signalling mechanisms, protein folding and translocation, and other cellular processes.

Key words

Calf thymus FK506-binding protein rapamycin-binding protein circular dichroism sequence of bovine FKBP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, M. W., Walsh, C. T., and Schreiber, S. L. (1990).J. Org. Chem. 55, 4984–4986.Google Scholar
  2. Bierer, B. E., Mattila, P. S., Standaert, R. F., Herzenberg, L. A., Burakoff, S. J., Crabtree, G., and Schreiber, S. L. (1990a).Proc. Natl. Acad. Sci. USA 87, 9231–9235.Google Scholar
  3. Bierer, B. E., Somers, P. K., Wandless, T. J., Burakoff, S. J., and Schreiber, S. L. (1990b).Science 250, 556–558.Google Scholar
  4. Blum, H., Beier, H., and Gross, H. J. (1987).Electrophoresis 8, 93–99.Google Scholar
  5. Chou, P. Y., and Fasman, G. D. (1974).Biochemistry 13, 222–248.Google Scholar
  6. Chou, P. Y., and Fasman, G. D. (1979).Biophys. J. 26, 367–384.Google Scholar
  7. Dumont, F. J., Melino, M. R., Staruch, M. J., Koprak, S. L., Fisher, P. A., and Sigal, N. H. (1990).J. Immunology 144, 1418–1424.Google Scholar
  8. Fasman, G. D. (1989). InHandbook of Biochemistry and Molecular Biology (Fasman, G. D., ed.), CRC Press, Boca Raton, Florida, pp. 79–85.Google Scholar
  9. Guo, D., Mant, C. T., Taneja, A. K., Parker, J. M. R., and Hodges, R. S. (1986).J. Chromatog. 359, 499–518.Google Scholar
  10. Harding, M. W., Galat, A., Uehling, D. E., and Schreiber, S. L. (1989).Nature 341, 758–760.Google Scholar
  11. Hinrichs, D. J., Wegmann, K. W., and Peters, B. A. (1983).Cell Immunol. 77, 202–209.Google Scholar
  12. Kino, T., Hatanaka, H., Hashimoto, M., Nishiyama, M., Goto, T., Okuhara, M., Kohsaka, M., Aoki, H., and Imanaka, H. (1987).J. Antib. 40, 1249–1255.Google Scholar
  13. Kino, T., Hatanaka, H., Miyata, S., Inamura, N., Nishiyama, M., Yajima, J., Goto, T., Okuhara, M., Kohsaka, M., Aoki, H., and Ochiai, J. (1987).J. Antib. 40, 1256–1265.Google Scholar
  14. Kyte, J., and Doolittle, R. F. (1982).J. Molec. Biol. 157, 105–132.Google Scholar
  15. Lapanje, S., and Poklar, N. (1989).Biophys. Chem. 34, 155–162.Google Scholar
  16. Maki, N., Sekiguchi, F., Nishimaki, J., Miwa, K., Hayano, T., Takahashi, N., and Suzuki, M. (1990).Proc. Natl. Acad. Sci. U.S.A. 87, 5440–5443.Google Scholar
  17. Mant, C. T., Zhou, N. E., and Hodges, R. S. (1989).J. Chromatog. 476, 363–375.Google Scholar
  18. Metcalfe, S. M., and Richards, F. M. (1990).Transplanation 49, 798–802.Google Scholar
  19. Monaco, H. L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L., and Eliopoulos, E. E. (1987).J. Molec. Biol. 197, 695–706.Google Scholar
  20. Nussenblatt, R. B., Salinas-Carmona, M., Waksman, B. H., and Gery, I. (1983).Int. Arch. Allergy Appl. Immunol. 70, 289–294.Google Scholar
  21. Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A. C. T., Findley, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E., and Kraulis, P. J. (1986).Nature 324, 383–385.Google Scholar
  22. Siekerka, J. J., Hung, S. H. Y., Poe, M., Lin, S. C., and Sigal, N. H. (1989).Nature 341, 755–757.Google Scholar
  23. Smith, R. D., Loo, J. A., Barinaga, C. J., Edmonds, C. G., and Udseth, H. R. (1990).J. Am. Soc. Mass Spectr. 1, 53–65.Google Scholar
  24. Standaert, R. F., Galat, A., Verdine, G. L., and Schreiber, S. L. (1990).Nature 346, 671–674.Google Scholar
  25. Starzl, T., Fung, J., Venkataramman, R., Todo, S., Demetris, A. J., and Jain, A. (1989).The Lancet 1000.Google Scholar
  26. Stiller, C. R., Dupre, J., Gent, M., Jenner, M. R., Keown, P. A., Laupacis, A., Martell, R., Rodger, N. W., Graffenried, B. V., and Wolfe, B. M. J. (1984).Science 223, 1362–1367.Google Scholar
  27. Stone, K. L., LoPresti, M. B., Williams, N. D., Crawford, J. M., DeAngelis, R., and Williams, K. R. (1989). InTechniques in Protein Chemistry (Hugli, T., ed.), Academic Press, San Diego, pp. 377–391.Google Scholar
  28. Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T., Hashimoto, M., and Taga, T. (1987).J. Am. Chem. Soc. 109, 5031–5033.Google Scholar
  29. Thomson, A. W. (1989).Immunol. Today 10, 6–9.Google Scholar
  30. Tropschug, M., Barthelmess, I. B., and Neupert, W. (1989).Nature 342, 953–955.Google Scholar
  31. Tropschug, M., Wachter, E., Mayer, S., Schonbrunner, E. R., and Schmid, F. X. (1990).Nature 346, 674–677.Google Scholar
  32. Yoshimura, N., Matsui, S., Hamashima, T., and Oka, T. (1989).Transplantation 47, 351–364.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • W. S. Lane
    • 1
  • A. Galat
    • 2
  • M. W. Harding
    • 3
  • S. L. Schreiber
    • 2
  1. 1.Harvard Microchemistry FacilityHarvard UniversityCambridge
  2. 2.Department of ChemistryHarvard UniversityCambridge
  3. 3.Vertex Pharmaceutical Inc.Cambridge

Personalised recommendations