Advertisement

Journal of Protein Chemistry

, Volume 10, Issue 1, pp 75–90 | Cite as

Proteins in the fossil bone of the dinosaur, seismosaurus

  • L. R. Gurley
  • J. G. Valdez
  • W. D. Spall
  • B. F. Smith
  • D. D. Gillette
Article

Abstract

Proteins have been successfully extracted from the fossil vertebra of a 150-million-year-old sauropod dinosaur (“Seismosaurus”) recently excavated from the Morrison Formation of New Mexico. HCl and guanidine·HCl extracts of the fossil bone and its sandstone matrix were concentrated, demineralized, and resolved into a number of different protein fractions by reversed-phase high-performance liquid chromatography (HPLC). One of these fractions had the same retention time as collagen. Amino acid analysis (Pico-Tag method) of these fractions confirmed they were proteins. Comparison of the correlation coefficients of the amino acid analyses with that of collagen standards indicated that none of the fractions contained significant amounts of collagen. Similar HPLC profiles were obtained for the HCl extracts of fossil bone and its sandstone matrix suggesting they contained the same proteins. However, different HPLC profiles were obtained when these HCl extracts were dried and reextracted with guanidine·HCl. These different fractions represent proteins unique to the fossil and were not found in the sandstone matrix. These differences were confirmed by amino acid analysis. Such information on fossil bone proteins might provide useful knowledge concerning the evolution of skeletal molecules and the fossilization process. Similar information on the proteins from the geological matrix might provide useful fingerprints for reconstructing ancient environments and for assessing sedimentary rocks for fossil fuel exploration.

Key words

Fossil proteins dinosaur proteins Seismosaurus biomarkers, fossil collagen fossil amino acids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ableson, P. H. (1956).Sci. Am. 195, 83–92.Google Scholar
  2. Ableson, P. H. (1957).NY Acad. Sci. 69, 276–285.Google Scholar
  3. Agnew, S. (1987).Seismosaurus of San Ysidro (Isotope and Nuclear Chemistry Division Colloquium, November 19, 1987, Los Alamos National Laboratory, unpublished data).Google Scholar
  4. Bada, J. L. (1985).Ann. Rev. Earth Planet. Sci. 13, 241–268.Google Scholar
  5. Bidlingmeyer, B. A., Cohen, S. A., and Tarvin, T. L. (1984).J. Chromatogr. 336, 93–104.Google Scholar
  6. Bornstein, M. B. (1958).Lab. Invest. 7, 134–137.Google Scholar
  7. Cohen, S. A., Meys, M., and Tarvin, T. L. (1989). InThe Pico-Tag Method. A Manual of Advanced Techniques for Amino Acid Analsis (WM02, Rev. 1), Millipore Corp., Bedford, MA, pp. 1–123.Google Scholar
  8. Cohen, S. A., Tarvin, T. L., and Bidlingmeyer, B. A. (1984).Am. Lab. 16, (Aug.) 48–59.Google Scholar
  9. Curry, G. B. (1988). InMolecular Evolution and the Fossil Record, Short Courses In Paleontology, No. 1 (Broadhead, T. W., ed.), Paleontological Society of America, pp. 20–33.Google Scholar
  10. de Jong, E. W., Westbroek, P., Westbroek, J. F., and Bruning, J. W. (1974).Nature 252, 63–64.Google Scholar
  11. Doberenz, A. R., and Wyckoff, R. W. G. (1967).Proc. Natl. Acad. Sci. U.S.A. 57, 539–541.Google Scholar
  12. Eastoe, J. E., and Eastoe, B. (1954).Biochem. J. 57, 453–459.Google Scholar
  13. Erdman, J. E., Marlett, E. M., and Hanson, W. E. (1956).Science 124, 1026.Google Scholar
  14. Fallick, G. J., and Rausch, C. W. (1979).Am. Lab. 11, (Nov.) 87–97.Google Scholar
  15. Gillette, D. D., and Bechtel, J. W. (1989).J. Vertebrate Paleontol. 9, 22A.Google Scholar
  16. Gurley, L. R., Prentice, D. A., Valdez, J. G., and Spall, W. D. (1983).J. Chromatogr. 226, 609–627.Google Scholar
  17. Gurley, L. R., Spall, W. D., Valdez, J. G., London, J. E., Dethloff, L. A., and Lehnert, B. E. (1988).Anal. Biochem. 172, 465–478.Google Scholar
  18. Gurley, L. R., Spall, W. D., Valeez, J. G., Jackson, P. S., Meyne, J., Ray, F. A., Prentice, D. A., and Blumenfeld, M. (1990). InHPLC of Biological Macromolecules: Methods and Applications (Gooding, K. M., and Regnier, F. E. ed.), Marcel Dekker, New York, pp. 529–570.Google Scholar
  19. Hare, P. E. (1980). InFossils in the Making: Vertebrate Taphonomy and Paleocology (Behrensmeyer, A. K., and Hill, A. P., eds.), University of Chicago Press, Chicago, pp. 208–219.Google Scholar
  20. Hedges, E. M., and Gowlett, J. A. J.Sci. Am. 254, (Jan.) 100–107.Google Scholar
  21. Hermodson, M., and Mahoney, W. C. (1981). InProceedings of the International Conference on Chemical Synthesis and Sequencing of Peptides and Proteins (Liu, P. Y., Schechter, A. N., and Heinrikson, R., eds.),Developments in Biochemistry, Vol. 17, Elsevier, New York, pp. 119–130.Google Scholar
  22. Isaacs, W. A., Little, K., Currey, J. D., and Tarlo, L. B. H. (1963).Nature 197, 192.Google Scholar
  23. Jackson, P. S., and Gurley, L. R. (1985).J. Chromatogr. 326, 199–216.Google Scholar
  24. Lowenstein, J. M. (1978). InBiogeochemistry of Amino Acids (Hare, F. E., Hoering, T. C., and King, K., eds.), John Wiley, New York, pp. 41–51.Google Scholar
  25. Lowenstein, J. M. (1988). InMolecular Evolution and the Fossil Record (Short Courses In Paleontology, No. 1; Broadhead, T. W., ed.), The Paleontological Society, University of Tennessee, Knoxville, Tennessee, pp. 12–19.Google Scholar
  26. Luparello, C., and Pucci-Minafra, I. (1986).Analyt. Biochem. 155, 352–357.Google Scholar
  27. Miller, M. F. II, and Wyckoff, R. W. G. (1968).Proc. Natl. Acad. Sci. U.S.A. 60, 176–178.Google Scholar
  28. Neeper, C. A., Schwartz, H., and Mann, D. (1989).Sampling Techniques of the Fossil Bone and Surrounding Sediments at the Seismosaurus Site, (Dinosaur Bone Chemistry Workshop, March 20, 1989, Los Alamos National Laboratory, Unpublished data).Google Scholar
  29. Pawlicki, R., Korbel, A., and Kubiak, H. (1966).Nature 211, 655–657.Google Scholar
  30. Philp, R. P., and Oung, J.-N. (1988).Analyt. Chem. 60, 887A-896A.Google Scholar
  31. Piez, K. A. (1976). InBiochemistry of Collagen (Ramachandran, G. N. and Reddi, A. H., eds.), Plenum Press, New York, pp. 1–44.Google Scholar
  32. Pinck, L. A., Dyal, R. S., and Allison, F. E. (1954).Soil Sci. 78, 109–118.Google Scholar
  33. Regnier, F. E. (1987).Science 238, 319–323.Google Scholar
  34. Rowley, M. J., Rich, P. V., Rich, T. H., and Mackay, I. R. (1986).Naturwissenschaften 73, 620–623.Google Scholar
  35. Savage, N. M., Lindorfer, M. A., and McMillen, D. A. (1990).Courier Forsch.-Inst. Senckenberg 118, 267–275.Google Scholar
  36. Sokal, R. R., and Rohlf, F. J. (1981). InBiometry, W. H. Freeman and Co., New York, pp. 454–560.Google Scholar
  37. Stokes, W. L. (1988).Dinosaur Tour Book, Starstone Publishing Co., Salt Lake City, UT, pp. 29–31.Google Scholar
  38. Waksman, S. A., and Iyer, K. R. N. (1933).Soil Sci. 36, 69–82.Google Scholar
  39. Weiner, S., Lowenstam, H. A., and Hood, L. (1976).Proc. Natl. Acad. Sci. U.S.A. 73, 2541–2545.Google Scholar
  40. Wyckoff, R. W. G. (1972).The Biochemistry of Animal Fossils, Williams & Wilkins Co., Baltimore, MD, pp. 1–152.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • L. R. Gurley
    • 1
  • J. G. Valdez
    • 1
  • W. D. Spall
    • 2
  • B. F. Smith
    • 2
  • D. D. Gillette
    • 3
  1. 1.Life Sciences DivisionLos Alamos National LaboratoryLos Alamos
  2. 2.Chemical and Laser Sciences DivisionLos Alamos National LaboratoryLos Alamos
  3. 3.Southwest paleontology Foundation, Inc.Albuquerque

Personalised recommendations