Advertisement

Journal of Applied Electrochemistry

, Volume 22, Issue 2, pp 104–115 | Cite as

A validated mathematical model for a zinc electrowinning cell

  • G. W. Barton
  • A. C. Scott
Papers

Abstract

A set of (95) equations forming a dynamic, nonlinear model of an industrial pilot-plant scale zinc electrowinning cell fed with high purity electrolyte is presented. Only the solution of the steady-state model is considered in this paper. Values for unknown model parameters have either been obtained from the literature or else estimated using experimental data taken from the pilot-plant cell. Sensitivity studies showed that uncertainties in the temperature dependency of the zinc and hydrogen reaction exchange current densities and the exchange coefficient for the hydrogen reaction have a major effect on the model predictions. Excellent agreement between predicted and experimental results was obtained, provided that cathodic mass transfer effects were included in the model. Both parameter estimation and solution of the steady-state model were carried out using the SPEEDUP flowsheeting package.

Keywords

Zinc Mass Transfer Model Prediction Reaction Exchange Excellent Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. C. Scott, R. M. Pitblado, G. W. Barton and A. R. Ault,J. Appl. Electrochem. 18 (1988) 120–7.Google Scholar
  2. [2]
    F. Laplicque and A. Storck,ibid.15 (1985) 925–35.Google Scholar
  3. [3]
    W. W. Harvey,Hydrometallurgy 2 (1976) 35–50.Google Scholar
  4. [4]
    T. W. Chapman, ‘Hydrometallurgical Process Fundamentals’, Plenum Press, New York (1984) pp. 599–616.Google Scholar
  5. [5]
    A. W. Bryson, ‘Modelling the Performance of Electro-winning Cells’, Hydrometallurgy 81, Society of Chemical Industry Symposium, UMIST, Manchester (1981).Google Scholar
  6. [6]
    A. C. Scott, The Development and Application of a Mathematical Model for the Zinc Electrowinning Process’, Ph.D. Thesis, University of Sydney, Australia (1988).Google Scholar
  7. [7]
    J. M. Coulson and J. F. Richardson, ‘Chemical Engineering’, Vol. 1. 3rd ed., Pergamon Press, Oxford (1977).Google Scholar
  8. [8]
    R. H. Perry and C. H. Chilton, ‘Chemical Engineers Hand-book’, 5th ed., McGraw Hill, New York (1973).Google Scholar
  9. [9]
    A. J. Bard and L. R. Faulkner, ‘Electrochemical Methods’, J. Wiley & Sons, New York (1980).Google Scholar
  10. [10]
    D. J. Pickett, ‘Electrochemical Reactor Design’, Elsevier Scientific, Amsterdam (1979).Google Scholar
  11. [11]
    H. V. Tartar, W. W. Newschwander and A. T. Ness,J. Am. Chem. Soc. 63 (1941) 28–36.Google Scholar
  12. [12]
    T. Hurlen and T. R. Breivik,Acta Chem Scand. A32 (1978) 447–53.Google Scholar
  13. [13]
    A. G. Turnbull and M. W. Wadsley, Extractive Metallurgy Symposium, Australian Institute of Mining Metallurgy, Melbourne (1984) p. 79.Google Scholar
  14. [14]
    M. Whitfield,Geochimica et Cosmochimica Acta 39 (1975) 1545–57.Google Scholar
  15. [15]
    K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96 (1974) 5701–7.Google Scholar
  16. [16]
    D. Pletcher, ‘Industrial Electrochemistry’, Chapman & Hall, London (1982).Google Scholar
  17. [17]
    T. Hurlen,Electrochim. Acta 7 (1962) 653–68.Google Scholar
  18. [18]
    L. J. Janssen,ibid.23 (1978) 81–6.Google Scholar
  19. [19]
    D. N. Bennion, ‘Modeling and Reactor Simulation’, AlChE Symposium Series No. 229,79 (1983) pp. 25–36.Google Scholar
  20. [20]
    H. Majima, E. Peters, Y. Awakura and S. K. Park,Met. Trans. B. 18B (1987) 41–7.Google Scholar
  21. [21]
    A. L. Rotenyan, N. P. Fedotov and L. U. Sok,Zh. Fiz. Khim. 31 (1957) 1295.Google Scholar
  22. [22]
    S. Trasatti,J. Electroanal. Chem. 39 (1972) 163–84.Google Scholar
  23. [23]
    D. A. Payne and A. J. Bard,J. Electrochem. Soc. 119 (1972) 1665–74.Google Scholar
  24. [24]
    H. Matsuda and Y. Ayabe,Elektrochem. 63 (1959) 1164.Google Scholar
  25. [25]
    A. G. Stromberg and L. N. Popova,Elektrokhimiya 4 (1968) 1147.Google Scholar
  26. [26]
    C. C. Pantelides,Comp. Chem. Eng. 12 (1988) 745–755.Google Scholar
  27. [27]
    R. Parsons, Personal communication (1986).Google Scholar
  28. [28]
    A. J. Bard, Personal communication (1986).Google Scholar
  29. [29]
    L. J. Janssen and J. G. Hoogland,Electrochim. Acta 15 (1970) 1013–23.Google Scholar
  30. [30]
    H. Vogt,ibid.23 (1978) 203–5.Google Scholar
  31. [31]
    F. Ajersch, D. Mathieu and D. L. Piron,Can. Met. Quarterly 24 (1985) 53–63.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • G. W. Barton
    • 1
  • A. C. Scott
    • 1
  1. 1.Department of Chemical EngineeringUniversity of SydneyAustralia

Personalised recommendations