Journal of Chemical Ecology

, Volume 14, Issue 1, pp 319–334 | Cite as

Response of generalist and specialist insects to qualitative allelochemical variation

  • M. Deane Bowers
  • Gillian M. Puttick
Article

Abstract

We examined the effects of a set of four biosynthetically related iridoid glycosides, aucubin, catalpol, loganin, and asperuloside, on larvae of a generalist,Lymantria dispar (Lymantriidae), the gypsy moth, and an adapted specialist, the buckeye,Junonia coenia (Nymphalidae). In general,L. dispar grew and survived significantly less well on artificial diets containing iridoid glycoside, compared to a control diet without iridoid glycosides. In choice tests, previous exposure to a diet containing iridoid glycosides caused larvae subsequently to prefer iridoid glycoside-containing diets even though they were detrimental to growth and survival. In contrast,J coenia larvae grew and survived better on diets with aucubin and catalpol, the two iridoid glycosides found in the host plantPlantago lanceolata (Plantaginaceae), than on diets with no iridoid glycoside or with loganin and asperuloside. The results of choice tests of diets with and without iridoid glycosides and between diets with different iridoid glycosides reflected these differences as well. These results are discussed in terms of (1) differences between generalists and specialists in their response to qualitative variation in plant allelochemical content, (2) the induction of feeding preferences, and (3) the evolution of qualitative allelochemical variation as a plant defense.

Key words

Iridoid glycoside Junonia coenia Lymantria dispar Lepidoptera Nymphalidae Lymantriidae induction insect-plant interaction generalist herbivore specialist herbivore 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbosa, P., Martinat, P., andWaldvogel, M. 1986. Development, fecundity and survival of the herbivoreLymantria dispar and the number of plant species in its diet.Ecol. Entomol. 11:1–6.Google Scholar
  2. Bentley, M.D., Leonard, D.E., Reynolds, E.K., Leach, S., Beck, A.B., andMurakoshi, I. 1984a. Lupine alkaloids as larval feeding deterrents for spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:398–400.Google Scholar
  3. Bentley, M.D., Leonard, D.E., andBushway, R.J. 1984b.Solanum alkaloids as larval feeding deterrents for spruce budworm,Choristoneura fumiferana (Lepidoptera: Tortricidae).Ann. Entomol. Soc. Am. 77:401–403.Google Scholar
  4. Berenbaum, M. 1985. Brementown revisited: Interactions among allelochemicals in plants.Recent Adv. Phytochem. 19:139–169.Google Scholar
  5. Berenbaum, M., Zangerl, A.R., andNitao, J.K. 1986. Constraints on chemical coevolution: wild parsnips and the parsnip webworm.Evolution 40:1215–1228.Google Scholar
  6. Bernays, E.A., andDeluca, C. 1981. Insect anti-feedant properties of an iridoid glycoside: Ipolamiide.Experientia 37:1289–1290.Google Scholar
  7. Blau, P.A., Feeny, P., Contardo, L., andRobson, D. 1978. Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance.Science 200:1296–1298.Google Scholar
  8. Bobbitt, J.M., andSegebarth, K.P. 1969. Iridoid glycosides and similiar substances, pp. 1–145,in W.I. Taylor and A.R. Battersby (eds.). Cyclopentanoid Terpene Derivatives. Marcel Dekker, New York.Google Scholar
  9. Bobbitt, J.M., Schmid, H., andAfrica, T.B. 1961.Catalpa glycosides. I. the characterization of catalposide.J. Org. Chem. 26:3090–3094.Google Scholar
  10. Bowers, M.D. 1980. Unpalatability as a defense strategy ofEuphydryas phaeton (Lepidoptera: Nymphalidae).Evolution 34:367–375.Google Scholar
  11. Bowers, M.D. 1981. Unpalatability as a defense strategy of western checkerspot butterflies (Euphydryas, Nymphalidae).Evolution 35:367–375.Google Scholar
  12. Bowers, M.D. 1983. Iridoid glycosides and larval hostplant specificity in checkerspot butterflies (Euphydryas: Nymphalidae).J. Chem. Ecol. 9:475–493.Google Scholar
  13. Bowers, M.D. 1984. Iridoid glycosides and host-plant specificity in larvae of the Buckeye butterfly,Junonia coenia (Nymphalidae).J. Chem. Ecol. 10:1567–1577.Google Scholar
  14. Bowers, M.D., andPuttick, G.M. 1986. The fate of ingested iridoid glycosides in lepidopteran herbivores.J. Chem. Ecol. 12:169–178.Google Scholar
  15. Brower, L.P. 1984. Chemical defense in butterflies, pp. 109–134,in R.I. Vane-Wright and P.R. Ackery (eds.). The Biology of Butterflies, Symposium of the Royal Entomological Society of London, 11. Academic Press, London.Google Scholar
  16. Brower, L.P., Seiber, J.N., Nelson, C.J., Lynch, S.P., andTuskes, P.M. 1982. Plant-determined variation in the cardenolide content, thin-layer chromatography profiles, and emetic potency of monarch butterflies,Danaus plexippus, reared on the milkweed,Asclepias eriocarpa, in California.J. Chem. Ecol. 8:579–633.Google Scholar
  17. Chambliss, O.L., andJones, C.M. 1966. Cucurbitacins: Specific insect attractants in Cucurbitaceae.Science 153:1392–1393.Google Scholar
  18. Cohen, J. 1983. Chemical Interactions among Milkweed Plants (Asclepiadaceae) and Lepidopteran Herbivores. PhD thesis. University of Florida, Gainesville.Google Scholar
  19. Cooper-Driver, G.A., Finch, S., Swain, T., andBernays, E. 1977. Seasonal variation in secondary plant compounds in relation to the palatability ofPteridium aquilinum.Biochem. Syst. Ecol. 5:211–218.Google Scholar
  20. Dahlgren, R., Jensen, S.R., andNielsen, B.J. 1981. A revised classification of the Angiosperms with comments on the correlation between chemical and other characters, pp. 149–204,in D.A. Young andD.S. Seigler (eds.. Phytochemistry and Angiosperm Phylogeny. Praeger, New York.Google Scholar
  21. Deboer, G., andHanson, F.E. 1984. Foodplant selection and induction of feeding preference among host and non-host plants in larvae of the tobacco hornwormManduca sexta.Entomol. Exp. Appl. 35:177–193.Google Scholar
  22. Dolinger, P.M., Ehrlich, P.R., Fitch, W.L., andBreedlove, D.E. 1973. Alkaloid and predation patterns in Colorado lupine populations.Oecologia 13:191–204.Google Scholar
  23. Ehrlich, P.R., andRaven, P.H. 1964. Butterflies and plants: A study in coevolution.Evolution 18:586–608.Google Scholar
  24. El-Naggar, L.J., andBeal, J.L. 1980. Iridoids: A review.J. Nat. Prod. 3:649–707.Google Scholar
  25. El-Naggar, S.F., andDoskotch, R.W. 1980. Specioside: A new iridoid glycoside fromCatalpa speciosa.J. Nat. Prod. 43:524–526.Google Scholar
  26. Feeny, P. 1976. Plant apparency and chemical defense.Recent Adv. Phytochem. 10:1–40.Google Scholar
  27. Gershenzon, J., andMabry, T.J. 1983. Secondary metabolites and the higher classification of angiosperms.Nord.J. Bot. 3:5–34.Google Scholar
  28. Gibbs, R.D. 1974. Chemotaxonomy of Flowering Plants. McGill-Queens University Press, Montreal.Google Scholar
  29. Gould, F. 1984. Mixed function oxidases: A devil's advocate position.Ecol. Entomol. 9:29–34.Google Scholar
  30. Harris, G.H., Stermitz, F.R., andJing, W. 1986b. Iridoids and alkaloids fromCastilleja (Scrophulariaceae) hostplants forPlatyptilia pica (Lepidoptera: Pterophoridae): Rhexifoline content ofP. pica.Biochem. Syst. Ecol. 14:499–506.Google Scholar
  31. Hegnauer, R. 1973. Chemotaxonomie der Pflanzen, Vol. 6. Berkauser Verlag, Basel.Google Scholar
  32. Hegnauer, R., andKooiman, P. 1978. Die systematische Bedeutung von iridoiden Inhaltsstoffen im Rahmen von Wettstein's Tubiflorae.Planta Med. 33:1–33.Google Scholar
  33. Inouye, H. 1971. Biosynthesis of iridoid and secoiridoid glucosides, pp. 290–313,in H. Wagner and L. Horhammer (eds.). Pharmacognosy and Phytochemistry. Springer, New York.Google Scholar
  34. Jensen, S.R., Nielsen, B.J., andDahlgren, R. 1975. Iridoid compounds, their occurrence and systematic importance in the angiosperms.Bot. Not. 128:148–180.Google Scholar
  35. Jermy, T., Hanson, F.E., andDethier, V.G. 1968. Induction of specific foodplant preferences in lepidopterous larvae.Entomol. Exp. Appl. 11:211–230.Google Scholar
  36. Jirawongse, V. 1964. A Chemotaxonomic Study of the Scrophulariaceae. PhD thesis. Purdue University. University Microfilms, Ann Arbor Michigan.Google Scholar
  37. Kaplan, M.A.C., andGottlieb, O.R. 1982. Iridoids as systematic markers in dicotyledons.Biochem. Syst. Ecol. 10:329–347.Google Scholar
  38. Kooiman, P. 1970. The occurrence of iridoid glycosides in the Scrophulariaceae.Acta Bot. Neerl. 19:329–340.Google Scholar
  39. Leonard, D.E. 1974. Recent developments in ecology and control of the gypsy moth.Annu. Rev. Entomol. 19:197–229.Google Scholar
  40. Lincoln, D.E. andMooney, H.A. 1984. Herbivory onDiplcaus aurantiacus shrubs in sun and shade.Oecologia 4:173–178.Google Scholar
  41. Lincoln, D.E., Newton, T.S., Ehrlich, P.R., andWilliams, K.S. 1982. Coevolution of the checkerspot butterflyEuphydryas chalcedona and its larval food plantDiplacus aurantiacus: Larval response to protein and leaf resin.Oecologia 52:216–223.Google Scholar
  42. Louda, S.M., andRodman, I.E. 1983a. Ecological patterns in the glucosinolate content of a native mustard,Cardamine cordifolia in the Rocky Mountains.J. Chem. Ecol. 9:397–421.Google Scholar
  43. Louda, S.M., andRodman, I.E. 1983b. Concentration of glucosinolates in relation to habitat and insect herbivory for the native cruciferCardamine cordifolia.Biochem. Syst. Ecol. 11:199–207.Google Scholar
  44. McKey, D. 1979. The distribution of secondary compounds within plants, pp. 55–133,in G.A. Rosenthal andD.H. Janzen (eds.). Hervibores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  45. McKey, D., Waterman, P.O., Mbi, C.N., Gartlan, G.N., andStruhsaker, T.T. 1978. Phenolic content of vegetation in two African rainforests: ecological implications.Science 202:61–64.Google Scholar
  46. Metcalf, R.L., Metcalf, R.A., andRhodes, A.M. 1980. Cucurbitacins as kairomones for diabroticite beetles.Proc. Natl. Acad. Sci. U.S.A. 77:3769–3772.Google Scholar
  47. Miller, J.S., andFeeny, P. 1983. Effects of benzylisoquinoline alkaloids on the larvae of polyphagous Lepidoptera.Oecologia 58:332–339.Google Scholar
  48. Mooney, H.A., andChu, C. 1974. Seasonal carbon allocation inHeteromeles arbutifolia, a California evergreen shrub.Oecologia 14:295–306.Google Scholar
  49. Nielsen, J.K., Larsen, L.M., andSorenson, L. 1977. Cucurbitacins E and I inIberis amara: Feeding inhibitors forPhyllotreta nemorum.Photochemistry 16:1519–1522.Google Scholar
  50. Puttick, G.M., andBowers, M.D. 1988. The effect of qualitative and quantitative variation in allelochemicals on a generalist insect: Iridoid glycosides and the southern armyworm.J. Chem. Ecol. 14:335–351.Google Scholar
  51. Rhoades, D.F. 1979. Evolution of plant chemical defense against herbivores, pp. 3–54,in G.A. Rosenthal andD.H. Janzen, (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.Google Scholar
  52. Roby, M.R., andStermitz, F.R. 1984a. Pyrrolizidine and pyridine monoterpene alkaloids from twoCastilleja plant hosts of the plume moth,Platyptilia pica.J. Nat. Prod. 47:846–853.Google Scholar
  53. Roby, M.R., andStermitz, F.R. 1984b. Penstemonoside and other iridoids fromCastelleja rhexifolia: Conversion of penstemonoside to the pyridine monoterpene alkaloid rhexifoline.J. Nat. Prod. 47:853–859.Google Scholar
  54. Rodman, J.E., andChew, F.S. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae.Biochem. Syst. Ecol. 8:43–50.Google Scholar
  55. Schoonhoven, L.M., andMeerman, J. 1978. Metabolic cost of changes in diet and neutralization of allelochemics.Entomol. Exp. Appl. 24:689–693.Google Scholar
  56. Scriber, J.M. 1979. The effects of sequentially switching foodplants upon biomass and nitrogen utilization by polyphagous and stenophagousPapilio larvae.Entomol. Exp. Appl. 25:203–215.Google Scholar
  57. Scriber, J.M. 1982. The behavior and nutritional physiology of southern armyworm larvae as a function of plant species consumed in earlier instars.Entomol. Exp. Appl. 31:359–369.Google Scholar
  58. Sokal, R.R., andRohlf, F.J. 1969. Biometry, Freeman, San Francisco.Google Scholar
  59. Stadler, E., andHansom, F.E. 1978. Food discrimination and induction of preference for artificial diet in the tobacco hornworm,Manduca sexta.Physiol. Entomol. 3:121–133.Google Scholar
  60. Stermitz, F.S., Gardner, D.R., Odendaal, F.J., andEhrlich, P.R. 1986a.Euphydryas anicia utilization of iridoid glycosides fromCastilleja andBesseya (Scrophulariaceae) hostplants.J. Chem. Ecol. 12:1459–1468.Google Scholar
  61. Waldbauer, G.P. 1968. The consumption and utilization of food by insects.Recent Adv. Insect Physiol. 5:229–288.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • M. Deane Bowers
    • 1
  • Gillian M. Puttick
    • 1
  1. 1.Museum of Comparative ZoologyHarvard UniversityCambridge

Personalised recommendations