Advertisement

Journal of Applied Electrochemistry

, Volume 18, Issue 4, pp 657–665 | Cite as

Double channel electrodes and the measurement of heterogeneous reaction rates at the solid-liquid interface

  • Richard G. Compton
  • Geoffrey M. Stearn
  • Patrick R. Unwin
  • Anthony J. Barwise
Papers

Abstract

The theory of collection efficiency measurements (under steady-state conditions) at double channel electrodes is extended to include the case where the species generated at the upstream electrode undergoes a heterogeneous reaction on the surface of the gap between the two electrodes. The problem is treated numerically using the Backwards Implicit method, which allows the collection efficiency to be related to the corresponding value of the rate constant for the heterogeneous process for chosen double electrode geometries and solution flow rates. The use of the technique is illustrated with experiments in which bromine, generated at the upstream electrode by the oxidation of bromide ions (in 0.5 M sulphuric acid), reacts with a cloth dyed with Direct Red 80, and is subsequently collected at the downstream electrode through transport-controlled reduction to bromide. Good agreement is found between theory and experiment.

Keywords

Bromide Bromine Sulphuric Acid Efficiency Measurement Collection Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. N. Frumkin and L. I. Nekrasov,Dokl. Akad. Nauk SSSR 126 (1959) 115.Google Scholar
  2. [2]
    H. Gerischer, I. Mattes and R. Braun,J. Electroanal. Chem. 10 (1965) 553.Google Scholar
  3. [3]
    R. Braun,J. Electroanal. Chem. 19 (1968) 23.Google Scholar
  4. [4]
    H. Matsuda,J. Electroanal. Chem. 16 (1968) 153.Google Scholar
  5. [5]
    K. Aoki, K. Tokuda and H. Matsuda,J. Electroanal. Chem. 79 (1977) 49.Google Scholar
  6. [6]
    W. J. Albery and M. L. Hitchman, ‘Ring-Disc Electrodes’, Clarendon Press, Oxford (1971).Google Scholar
  7. [7]
    P. R. Unwin and R. G. Compton,Compr. Chem. Kinet. 29 in press.Google Scholar
  8. [8]
    S. Moldoveanu and J. L. Anderson,J. Electroanal. Chem. 175 (1984) 67.Google Scholar
  9. [9]
    J. L. Anderson and S. Moldoveanu,J. Eectroanal. Chem. 179 (1984) 107, 119.Google Scholar
  10. [10]
    R. G. Compton, M. B. G. Pilkington and G. M. Stearn,J. Chem. Soc. Faraday Trans. 1, in press.Google Scholar
  11. [11]
    R. G. Compton, B. A. Coles, G. M. Stearn and A. M. Waller,J. Chem. Soc. Faraday Trans. 1, in press.Google Scholar
  12. [12]
    R. G. Compton, B. A. Coles and M. B. G. Pilkington,J. Chem. Soc. Faraday Trans. 1, in press.Google Scholar
  13. [13]
    P. R. Unwin, A. J. Barwise and R. G. Compton,J. Colloid Interface Sci, in press.Google Scholar
  14. [14]
    R. G. Compton and P. R. Unwin,J. Electroanal. Chem. 205 (1986) 1.Google Scholar
  15. [15]
    B. A. Coles and R. G. Compton,J. Electroanal. Chem. 144 (1983) 87.Google Scholar
  16. [16]
    K. Aoki, K. Tokuda and H. Matsuda,J. Electroanal. Chem. 217 (1987) 33.Google Scholar
  17. [17]
    J. B. Flanagan and L. Marcoux,J. Phys. Chem. 78 (1974) 718.Google Scholar
  18. [18]
    M. A. Lévêque,Ann. Mines. Mem., Ser. 12 13 (1928) 201.Google Scholar
  19. [19]
    L. Lapidus and G. F. Pinder ‘Numerical Solution of Partial Differential Equations in Science and Engineering”, Wiley, NY (1982).Google Scholar
  20. [20]
    V. G. Levich, ‘Physicochemical Hydrodynamics”, Prentice-Hall, Englewood Cliffs, NJ (1962).Google Scholar
  21. [21]
    W. J. Albery and S. Bruckenstein,Trans. Faraday Soc. 62 (1966) 1920.Google Scholar
  22. [22]
    R. G. Compton and G. M. Stearn,J. Chem. Soc. Faraday Trans. 1, in press.Google Scholar
  23. [23]
    W. D. Cooper and R. Parsons,Trans. Faraday Soc. 66 (1970) 1698.Google Scholar
  24. [24]
    W. J. Albery, M. L. Hitchman and J. Ulstrup,Trans. Faraday Soc. 64 (1968) 2831.Google Scholar
  25. [25]
    W. J. Albery, M. L. Hitchman and J. Ulstrup,Trans. Faraday Soc. 65 (1969) 1101.Google Scholar
  26. [26]
    W. J. Albery, A. H. Davis and A. J. Mason,Faraday Discuss. 56 (1974) 317.Google Scholar
  27. [27]
    G. Faita, G. Fiori and T. Mussini,Electrochim. Acta 13 (1968) 1765.Google Scholar
  28. [28]
    R. M. Machado and T. W. Chapman,J. Electrochem. Soc. 134 (1987) 387.Google Scholar
  29. [29]
    H. A. Laitinen and K. W. Boyer,Anal. Chem. 44 (1972) 920.Google Scholar
  30. [30]
    E. R. Wright, R. A. Smith and B. G. Messick, in ‘Colorimetric Determination of Nonmetals (Chemical Analysis Vol. 8)’ (edited by D. F. Boltz and J. A. Howell), Wiley, NY (1978) p. 44.Google Scholar
  31. [31]
    R. O. Griffith, A. McKeown and A. G. Winn,Trans. Faraday Soc. 28 (1932) 101.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1988

Authors and Affiliations

  • Richard G. Compton
    • 1
  • Geoffrey M. Stearn
    • 1
  • Patrick R. Unwin
    • 1
  • Anthony J. Barwise
    • 1
  1. 1.Physical Chemistry LaboratoryOxford UniversityOxfordUK

Personalised recommendations