Advertisement

Hyperfine Interactions

, Volume 4, Issue 1–2, pp 833–837 | Cite as

The localization and thermal diffusion of positive muons in niobium

  • W. F. Lankford
  • H. K. Birnbaum
  • A. T. Fiory
  • R. P. Minnich
  • K. G. Lynn
  • C. E. Stronach
  • L. H. Bieman
  • W. J. Kossler
  • J. Lindemuth
Special Topics and New Materials Muon Diffusion, H in Metals, Hydrides

Abstract

The depolarization rate for spin polarized μ+ particles implanted into a high purity niobium crystal was studied as a function of temperature. The results were analyzed in terms of nuclear dipolar field inhomogeneity due to the host93Nb, and the local field averaging effect of the muon's motion. An analysis is presented in terms of the structure of the muon wavefunction and parameters characterizing the muon diffusion.

Keywords

Thin Film Niobium High Purity Thermal Diffusion Local Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Völkl and G. Alefeld, inDiffusion in Solids edited by A. Nowick and J. Burton (Academic Press, New York, 1975).Google Scholar
  2. 2.
    A. Schenck, inNuclear and Particle Physics at Intermediate Energies, edited by J. B. Warren (Plenum Press, New York, 1975), p. 176.Google Scholar
  3. 3.
    I. I. Gurevich, et al., Phys. Lett.40A, 143 (1972)Google Scholar
  4. 3a.
    V. G. Grebinnik et al., Zh. Eksp. Teor. Fiz.68, 1548 (1975) [Soviet Phys. —JETP41, 777 (1976)].Google Scholar
  5. 4.
    A. T. Fiory, D. E. Murnick, M. Leventhal and W. J. Kossler, Phys. Rev. Lett.33, 969 (1974).Google Scholar
  6. 5.
    H. K. Birnbaum and C. P. Flynn, Phys. Rev. Lett.37, 25 (1976).Google Scholar
  7. 6.
    C. G. Chen and H. K. Birnbaum, Physica Stat. Sol. (a)36, 687 (1976).Google Scholar
  8. 7.
    H. Wipf, private communication.Google Scholar
  9. 8.
    G. Matusiewicz and H. K. Birnbaum, J. Physics, to be published.Google Scholar
  10. 9.
    C. P. Flynn and A. M. Stoneham, Phys. Rev. B1, 3966 (1970); A. M. Stoneham, Ber. Bunsenges. Phys. Chem.76, 816 (1972).Google Scholar
  11. 10.
    J. H. Van Vleck, Phys. Rev.74, 1168 (1948).Google Scholar
  12. 11.
    O. Kanert and M. Mehring in NMR, Basic Principles and Progress, V. 3, P. Diehl, E. Fluckard and R. Kosfeld, eds. (Springer-Verlag, Berlin, 1971).Google Scholar
  13. 12.
    O. Hartmann, et al., Phys. Lett.61A, 141 (1977).Google Scholar
  14. 13.
    A. Abragam, Principles of Nuclear Magnetism, Oxford, (1961).Google Scholar
  15. 14.
    Space Radiation Effects Laboratory, Newport News, Virginia.Google Scholar
  16. 15.
    A similar anomaly was recently observed by H. K. Birnbaum et al. at S.I.N., Villigen, Switzerland.Google Scholar

Copyright information

© North-Holland Publishing Company 1978

Authors and Affiliations

  • W. F. Lankford
    • 1
  • H. K. Birnbaum
    • 2
  • A. T. Fiory
    • 3
  • R. P. Minnich
    • 3
  • K. G. Lynn
    • 4
  • C. E. Stronach
    • 5
  • L. H. Bieman
    • 6
  • W. J. Kossler
    • 7
  • J. Lindemuth
    • 7
  1. 1.George Mason UniversityFairfax
  2. 2.University of IllinoisUrbana
  3. 3.Bell LaboratoriesMurray Hill
  4. 4.Brookhaven National LaboratoryUpton
  5. 5.Virginia State CollegePetersburg
  6. 6.Wayne State UniversityDetroit
  7. 7.The College of William and MaryWilliamsburg

Personalised recommendations