Journal of Chemical Ecology

, Volume 16, Issue 1, pp 13–25 | Cite as

Chemical properties of femoral gland secretions in the desert iguana,Dipsosaurus dorsalis

  • Allison C. Alberts


This study investigates the chemistry of femoral gland secretions in the desert iguana,Dipsosaurus dorsalis (Lacertilia: Iguanidae), and discusses their possible functional significance. Electrophoretic and proton NMR studies indicated that the secretions are composed of approximately 80 % protein and 20% lipid material. Individual differences in polyacrylamide gel banding patterns of femoral gland proteins were found. Reflectance spectroscopy revealed that the secretions strongly absorb longwave ultraviolet light, a feature that may be important in the localization of secretion deposits in the environment.

Key Words

Desert iguana Dipsosaurus dorsalis femoral glands contact pheromones ultraviolet light signal localization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, A.C. 1989. Ultraviolet visual sensitivity in desert iguanas: Implications for pheromone detection.Anim. Behav. 38:129–137.Google Scholar
  2. Albone, H.S. 1984. Mammalian Semiochemistry: The Investigation of Chemical Signals Between Mammals. John Wiley & Sons, New York.Google Scholar
  3. Beidler, L.M. 1977. Taste stimuli as possible messengers, pp. 483–488,in D. Muller-Schwarze and M.M. Mozell (eds.). Chemical Signals in Vertebrates. Plenum Press, New York.Google Scholar
  4. Bhacca, N.S., andWilliams, D.H. 1964. Applications of NMR Spectroscopy in Organic Chemistry: Illustrations from the Steroid Field. Holden-Day, San Francisco.Google Scholar
  5. Bossert, W.H., andWilson, E.O. 1963. The analysis of olfactory communication among animals.J. Theor. Biol. 5:443–469.Google Scholar
  6. Burghardt, G.M. 1970. Chemical perception in reptiles, pp. 241–308,in J.W. Johnston, Jr., D.G. Moulton, and A. Turk (eds.). Communication by Chemical Signals, Vol. 1. Appleton-Century-Crofts, New Jersey.Google Scholar
  7. Burken, R.R., Wertz, P.W., andDowning, D.T. 1985. A survey of polar and nonpolar lipids extracted from snake skin.Comp. Biochem. Physiol. 81B:315–318.Google Scholar
  8. Chiu, K.W., Lofts, B., andTsuI, H.W. 1970. The effects of testosterone of the sloughing cycle and epidermal glands of the female gecko,Gekko gecko L.Gen. Comp. Endocrinol. 15:12–19.Google Scholar
  9. Chiu, K.W., Maderson, P.F.A., Alexander, S.A., andWong, K.L. 1975. Sex steroids and epidermal glands in two species of gekkonine lizards.J. Morphol. 147:9–22.Google Scholar
  10. Cole, C.J. 1966a. Femoral glands of the lizard,Crotaphytus collaris.J. Morphol. 118:119–127.Google Scholar
  11. Cole, C.J. 1966b. Femoral glands in lizards.Herpetologica 22:199–206.Google Scholar
  12. Cooper, W.E., Jr., andGarstka, W.R. 1987. Lingual responses to chemical fractions of urodaeal glandular pheromone of the skinkEumeces laticeps.J. Exp. Zool. 242:249–253.Google Scholar
  13. Cooper, W.E., Jr., andVitt, L.J. 1986. Lizard pheromones: behavioral responses and adaptive significance in skinks of the genusEumeces, pp. 323–340,in D. Duvall, D. Muller-Schwarze, and R.M. Silverstein (eds.). Chemical Signals in Vertebrates IV. Encology, Evolution, and Comparative Biology. Plenum Press, New York.Google Scholar
  14. Duvall, D. 1979. Western fence lizard (Sceloporus occidentalis) chemical signals, I. Conspecific discriminations and release of a species-typical visual display.J. Exp. Zool. 210:321–326.Google Scholar
  15. Duvall, D. 1986. A new question of pheromones: Aspects of possible chemical signaling and reception in the mammal-like reptiles, pp. 219–238, in N. Hotton III, P.D. MacLean, J.J. Roth, and E.C. Roth (eds.). The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington, D.C.Google Scholar
  16. Ebling, F.J. 1977. Hormonal control of mammalian skin glands, pp. 17–33,in D. Muller-Schwarze and M.M. Mozell (eds.). Chemical Signals in Vertebrates. Plenum Press, New York.Google Scholar
  17. Fergusson, B., Bradshaw, S.D., andCannon, J.R. 1985. Hormonal control of femoral gland secretion in the lizard,Amphibolurus ornatus.Gen. Comp. Endocrinol. 57:371–376.Google Scholar
  18. Forbes, T.R. 1941. Observations in the urogenital anatomy of the adult male lizard,Sceloporus, and on the action of implanted pellets of testerone and of estrone.J. Morphol. 68:31–69.Google Scholar
  19. Frohlich, M.W. 1976. Appearance of vegetation in ultraviolet light: Absorbing flowers, reflecting backgrounds.Science 194:839–841.Google Scholar
  20. Garstka, W.R., andCrews, D. 1981. Female sex pheromone in the skin and circulation of a garter snake.Science 214:281–283.Google Scholar
  21. Glinski, T.H., andKrekorian, C.O. 1985. Individual recognition in free-living adult male desert iguanas,Dipsosaurus dorsalis.J. Herpetol. 19:541–544.Google Scholar
  22. Gunstone, F.D. 1967. An Introduction to the Chemistry and Biochemistry of Fatty Acids and their Glycerides. Chapman and Hall, London.Google Scholar
  23. Hadley, N.F. 1985. The Adaptive Role of Lipids in Biological Systems. John Wiley & Sons, New York.Google Scholar
  24. Halpern, M. 1987. The organization and function of the vomeronasal system.Annu. Rev. Neurosci. 10:325–362.Google Scholar
  25. Johnson, R.P. 1973. Scent marking in mammals.Anim. Behav. 21:521–535.Google Scholar
  26. Koller, L.R. 1985. Ultraviolet Radiation. John Wiley & Sons, New York.Google Scholar
  27. Krekorian, C.O. 1976. Home range size and overlap and their relationship to food abundance in the desert iguana,Dipsosaurus dorsalis.Herpetologica 32:405–412.Google Scholar
  28. Krekorian, C.O. 1989. Field and laboratory observations on chemoreceptive functions in the desert iguana,Dipsosaurus dorsalis. J. Herpetol. In press.Google Scholar
  29. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.Google Scholar
  30. Linnaeus, C. 1758. Systema Naturae, 10th ed. Vol. 1, Laurentius Salvius.Google Scholar
  31. Maderson, P.F.A. 1972. The structure and evolution of holocrine epidermal glands in sphaerodactyline and eublepharine gekkonid lizards.Copeia 1972:559–571.Google Scholar
  32. Morrissey, J.H. 1981. Silver stain for proteins in polyacrylcamide gels: A modified procedure with enhanced uniform sensitivity.Anal. Biochem. 117:307–310.Google Scholar
  33. Oldak, P.D. 1976. Comparison of the scent gland secretion lipids of twenty-five snakes: Implications for biochemical systematics.Copeia 1976:320–326.Google Scholar
  34. Parsons, T.S. 1970. The nose and Jacobson's organ, pp. 99–191,in C. Gans and T.S. Parsons (eds.). Biology of the Reptilia, Vol. 2. Academic Press, New York.Google Scholar
  35. Pedersen, J.M. 1988. Laboratory observations on the function of tongue extrusion in the desert iguana,Dipsosaurus dorsalis.J. Comp. Psychol. 102:193–196.Google Scholar
  36. Schell, P.M., andWeldon, P.J. 1985.13C-NMR analysis of snake skin lipids.Agric. Biol. Chem. 49:3597–3600.Google Scholar
  37. Schenk, G.H. 1973. Absorption of Light and Ultraviolet Radiation. Allyn and Bacon, Boston.Google Scholar
  38. Schwenk, K. 1985. Occurrence, distribution and functional significance of taste buds in lizards.Copeia 1985:91–101.Google Scholar
  39. Simon, C.A. 1983. A review of lizard chemoreception, pp. 119–133,in R.B. Huey, E.R. Pianka, and T.W. Schoener (eds.). Lizard Ecology. Cambridge University Press, Harvard.Google Scholar
  40. Stebbins, R.C. 1966. A Field Guide to Western Reptiles and Amphibians. Houghton-Mifflin, Boston.Google Scholar
  41. Weldon, P.J., andBagnall, D. 1987. A survey of polar and nonpolar skin lipids from lizards by thin-layer chromatography.Comp. Biochem. Physiol. 87B:345–349.Google Scholar
  42. Wilson, E.O., andBossert, W.H. 1963. Chemical communication among animals.Recent Prog. Horm. Res. 19:673–716.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • Allison C. Alberts
    • 1
  1. 1.Research DepartmentZoological Society of San DiegoSan Diego

Personalised recommendations