Journal of Statistical Physics

, Volume 29, Issue 2, pp 231–245 | Cite as

Order and disorder lines in systems with competing interactions: I. Quantum spins atT=0

  • P. Ruján


In the parameter space of systems with competing interactions there are specific trajectories called order (disorder) lines. Along these trajectories the competition between the different interactions effectively reduces the dimensionality of the system and the model can be exactly solved. It is shown that the order (disorder) trajectories end up at a multicritical point. The method of Peschel and Emery is used to determine the (anisotropic) critical behavior of the spin-spin correlation functions near the multicritical point. The quantum spin systems discussed here include theXYZ chain in a field, the straggeredXYZ chain in a field, and a Hamiltonian version of a three-dimensional Ising model with biaxial competing interactions.

Key words

Quantum spin systems order disorder kinetic Ising model duality transformation Hamiltonian limit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Peschel and V. J. Emery,Z. Phys. B 43:241 (1981). For a different approach see also J. Kurman, H. Thomas, and G. Müller,Physica A, to be published.Google Scholar
  2. 2.
    J. Stevenson,Can. J. Phys. 48:2118 (1970);J. Math. Phys. 11:420 (1970).Google Scholar
  3. 3.
    M. B. Geilikmann,Sov. Phys. JETP 39:570 (1974); E. Fradkin and T. P. Eggarter,Phys. Rev. A 14:495 (1976).Google Scholar
  4. 4.
    E. Barouch and B. McCoy,Phys. Rev. A 3:786 (1971).Google Scholar
  5. 5.
    M. Steiner, J. Villain, and G. G. Windsor,Adv. Phys. 25:87 (1976).Google Scholar
  6. 6.
    J. C. Bonner, H. W. J. Blöte, H. Beck, and G. Müller, inPhysics in One Dimension, J. Bernasconi and T. Schneider, eds., Springer-Verlag, New York (1981).Google Scholar
  7. 7.
    J. T. Devreese, R. P. Evrard, and V. E. van Doren, eds.,Highly Conducting One-Dimensional Solids, Plenum Press, New York (1980).Google Scholar
  8. 8.
    B. Sutherland,J. Math. Phys. 11:3183 (1970).Google Scholar
  9. 9.
    R. J. Baxter,Ann. Phys. (N.Y.) 70:193, 323 (1972).Google Scholar
  10. 10.
    E. Fradkin and L. Susskind,Phys. Rev. D 17:2637 (1978).Google Scholar
  11. 11.
    For a review see P. W. Kasteleyn, inFundamental Problems in Statistical Mechanics, Vol. 3, E. D. G. Cohen, ed., North-Holland, Amsterdam (1975).Google Scholar
  12. 12.
    For a recent review see P. C. Hohenberg and B. I. Halperin,Rev. Mod. Phys. 49:435 (1977).Google Scholar
  13. 13.
    R. Glauber,J. Math. Phys. 4:294 (1963).Google Scholar
  14. 14.
    See K. Kawasaki, inPhase Transitions and Critical Phenomena, Vol. II, C. Domb and M. S. Green, eds., Academic, New York (1972).Google Scholar
  15. 15.
    B. U. Felderhof,Rep. Math. Phys. 1:215 (1970); E. D. Siggia,Phys. Rev. B 16:2319 (1977).Google Scholar
  16. 16.
    H. A. Kramers and G. H. Wannier,Phys. Rev. 60:252 (1941); L. Mittag and M. J. Stephen,J. Math. Phys. 12:441 (1971).Google Scholar
  17. 17.
    R. J. Baxter,Ann. Phys. (N. Y.) 76(1), 25, 48 (1973).Google Scholar
  18. 18.
    J. D. Johnson, S. Krinski, and B. M. McCoy,Phys. Rev. A 8:2526 (1973).Google Scholar
  19. 19.
    B. M. McCoy and T. T. Wu,Nuovo Cimento 56B:311 (1968).Google Scholar
  20. 20.
    C. N. Yang and C. P. Yang,Phys. Rev. 150:321 (1966).Google Scholar
  21. 21.
    J. D. Johnson and B. M. McCoy,Phys. Rev. A 4:1613 (1972).Google Scholar
  22. 22.
    E. Lieb, T. Schultz, and D. Mattis,Ann. Phys. (N. Y.) 16:407 (1961).Google Scholar
  23. 23.
    S. Katsura,Phys. Rev. 127:1508 (1962).Google Scholar
  24. 24.
    T. Niemeijer,Physica 36:377 (1967).Google Scholar
  25. 25.
    M. Suzuki,Progr. Theor. Phys. 46:1377 (1971).Google Scholar
  26. 26.
    M. J. Stephen and L. Mittag,J. Math. Phys. 13:1944 (1972).Google Scholar
  27. 27.
    W. Selke and M. E. Fisher,Z. Phys. B 40:71 (1980).Google Scholar
  28. 28.
    S. Redner,J. Stat. Phys. 25:15 (1981).Google Scholar
  29. 29.
    F. Haake and K. Thol,Z. Phys. B 40:219 (1980); R. Pandit, G. Forgács, and P. Ruján,Phys. Rev. B 24:1576 (1981).Google Scholar
  30. 30.
    R. M. Hornreich, R. Liebman, H. G. Schuster, and W. Selke,Z. Phys. B 35:91 (1979).Google Scholar
  31. 31.
    For a review of ferroelectric models see E. H. Lieb and F. Y. Wu, inPhase Transitions and Critical Phenomena, Vol. II, C. Domb and M. S. Green, eds., Academic Press, London (1972); J. L. Black and V. J. Emery,Phys. Rev. B 23:429 (1981); M. Kohmoto, M. P. M. den Nijs, and L. P. Kandanoff,Phys. Rev. B 24:5229 (1981); C. J. Hamer,J. Phys. A 14:2981 (1981).Google Scholar
  32. 32.
    Z. Rácz and M. F. Collins,Phys. Rev. B 13:3074 (1973).Google Scholar
  33. 33.
    P. Ruján,Phys. Rev. B 24:6620 (1981); M. N. Barber and P. M. Duxbury,J. Phys. A 14:L251 (1981).Google Scholar
  34. 34.
    P. Ruján, in preparation.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • P. Ruján
    • 1
  1. 1.Department of PhysicsNortheastern UniversityBoston

Personalised recommendations