Advertisement

Journal of Statistical Physics

, Volume 29, Issue 2, pp 159–175 | Cite as

The mermin-wagner phenomenon and cluster properties of one- and two-dimensional systems

  • C. A. Bonato
  • J. Fernando Perez
  • Abel Klein
Articles

Abstract

We give optimal conditions concerning the range of interactions for the absence of spontaneous breakdown of continuous symmetries for one- and two-dimensional quantum and classical lattice and continuum systems. For a class of models verifying infrared bounds our conditions are necessary and sufficient. Using the same techniques we obtain “a priori” bounds on clustering for systems with continuous symmetry, improving results of Jasnow and Fisher.

Key words

Symmetry breaking cluster properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Klein, L. J. Landau, and D. Shucker, On the absence of spontaneous breakdown of continuous symmetry for equilibrium states in two dimensions,J. Stat. Phys. 26:505 (1981).Google Scholar
  2. 2.
    J. Fröhlich and C. Pfister, On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,Commun. Math. Phys. 81:277 (1981).Google Scholar
  3. 3.
    C. E. Pfister, On the symmetry of the Gibbs states in two-dimensional lattice systems,Commun. Math. Phys. 79:181 (1981).Google Scholar
  4. 4.
    R. L. Dobrushin and S. B. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics,Commun. Math. Phys. 42:31 (1975).Google Scholar
  5. 5.
    P. A. Martin, A remark on the Goldstone theorem in statistical mechanics, preprint, Lausanne, 1981.Google Scholar
  6. 6.
    N. D. Mermin, Absence of ordering in certain classical systems,J. Math. Phys. 8:1061 (1967).Google Scholar
  7. 7.
    N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,phys. Rev. Letters 17:1133 (1966).CrossRefGoogle Scholar
  8. 8.
    J. Fröhlich, R. Israel, E. H. Lieb, and B. Simon, Phase transition and reflection positivity, I,Commun. Math. Phys. 62:1 (1978); J. Fröhlich, B. Simon, and T. Spencer,Commun. Math. Phys. 50:79 (1976).Google Scholar
  9. 9.
    D. Jasnow and M. E. Fisher, Decay of order in isotropic systems of restricted dimensionality I, II,Phys. Rev. B 3:895, 907 (1971)Google Scholar
  10. 10.
    O. A. McBryan and T. Spencer, On the decay of correlations in SO(n)-symmetric ferromagnets,Commun. Math. Phys. 53:299 (1977).Google Scholar
  11. 11.
    D. Ruelle,Statistical Mechanics, Benjamin, New York (1969).Google Scholar
  12. 12.
    W. Driessler, L. J. Landau, and J. Fernando Perez, Estimates of critical lengths and critical temperatures for classical and quantum lattice systems,J. Stat. Phys. 20:123 (1979).Google Scholar
  13. 13.
    S. B. Schlosman, Phase transitions for two-dimensional models with isotropic short-range interactions and continuous symmetries,Commun. Math. Phys. 71:207 (1980).Google Scholar
  14. 14.
    R. L. Dobrushin, Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials,Commun. Math. Phys. 32:269 (1973).Google Scholar
  15. 15.
    M. Cassandro and E. Olivieri, Renormalization group and analyticity in one-dimension: A proof of Dobrushin's theorem,Commun. Math. Phys. 80:255 (1981).Google Scholar
  16. 16.
    L. J. Landau, J. Fernando Perez, and W. F. Wreszinski, Energy gap, clustering and the Goldstone theorem in statistical mechanics,J. Stat. Phys. 26:755 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • C. A. Bonato
    • 1
  • J. Fernando Perez
    • 1
  • Abel Klein
    • 2
  1. 1.Instituto de FisicaUniversidade de São PauloSão PauloBrazil
  2. 2.Department of MathematicsUniversity of CalforniaIrvine

Personalised recommendations