Journal of Chemical Ecology

, Volume 11, Issue 8, pp 1045–1051 | Cite as

Feeding deterrency of some pyrrolizidine, indolizidine, and quinolizidine alkaloids towards pea aphid (Acyrthosiphon pisum) and evidence for phloem transport of indolizidine alkaloid swainsonine

  • David L. Dreyer
  • Kenneth C. Jones
  • Russell J. Molyneux


The feeding deterrency of a series of pyrrolizidine, indolizidine, and quinolizidine alkaloids and selected derivatives was measured against the pea aphid (Acyrthosiphon pisum Harris). The indolizidine alkaloid, castanospermine, was intensely active (ED50, 20 ppm) as were the quinolizidine alkaloids, but only modest feeding deterrency was observed with most of the pyrrolizidine alkaloids tested. The insect survival rate of aphids on a castanospermine-supplemented diet over 24 hr was also very low relative to the controls. Castanospermine does not inhibit aphid trehalase. The indolizidine alkaloid swainsonine occurred in the honeydew of pea aphid feeding on the locoweed,Astragalus lentiginosus. Since the pea aphid is a phloem feeder, swainsonine must be transported in the phloem.

Key words

Feeding deterrents Acyrthosiphon pisum Homoptera Aphi-didae host-plant resistance pyrrolizidine indolizidine quinolizidine alkaloids locoweed honeydew Astragalus lentiginosus phloem transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akey, D.H., andBeck, S.D. 1971. Continuous rearing of the pea aphidAcrythosiphon pisum, on a holidic diet.Ann. Entomol. Soc. Am. 64:353–356.Google Scholar
  2. Bull, L.B., Culvenor, C.C.J., andDick, A.T. 1968. The Pyrrolizidine Alkaloids. North-Holland, Amsterdam.Google Scholar
  3. Candy, D.J., andKilby, B.A. 1975. Insect Biochemistry and Function. Chapman and Hall, London.Google Scholar
  4. Campbell, B.C., andDreyer, D.L. 1985. Host-plant resistance of sorghum: Differential hydrolysis of sorghum pectic substances by polysaccharases of greenbug biotypes (Schizaphis graminum, Homoptera: Aphididae).Arch. Insect Biochem. Physiol. 2:203–215.Google Scholar
  5. Culvenor, C.C.J., andSmith, L.W. 1955. The alkaloids ofErectites quadridentata D.C.Aust. J. Chem. 8:556–561.Google Scholar
  6. Culvenor, C.C.J., Edgar, J.A., Smith, L.W., andTweeddale, H.J. 1970. Dihydropyrrolizines III. Preparation and reactions of derivatives related to pyrrolizidine alkaloids.Aust. J. Chem. 23:1853–1867.Google Scholar
  7. Dorling, P.R., Chambers, J.P., andColegate, S.M. 1980. Inhibition of lysosomal α-mannosidase by swainsonine, an indolizidine alkaloid isolated fromSwainsona canescens.Biochem. J. 191:649–651.Google Scholar
  8. Dreyer, D.L., andCampbell, B.C. 1983. Association of the degree of methylation of intercellular pectin with plant resistance to aphids and with induction of aphid biotypes.Experientia 40:224–226.Google Scholar
  9. Dreyer, D.L., Reese, J.C., andJones, K.C. 1981. Aphid feeding deterrents in sorghum. Bioassay, isolation, and characterization.J. Chem. Ecol. 7:273–284.Google Scholar
  10. Johnson, A.E., Molyneux, R.J., andMerrill, G.B. 1985. Chemistry of toxic range plants. Variation in pyrrolizidine alkaloid content ofSenecio, Amsinckia, andCrotalaria species.J. Agric. Food Chem. 33:50–55.Google Scholar
  11. Jones, T.H., andBlum, M.S. 1983. Arthropod alkaloids: Distribution, functions and chemistry.In S.W. Pelletier (ed.). Alkaloids: Chemical and Biological Perspectives. Wiley, New York, vol. 1., pp. 34–84.Google Scholar
  12. Matile, P. 1984. Das toxische Kompartiment der Pflanzenzelle.Naturwissenschaften 71:18–24.Google Scholar
  13. McLean, D.L., andKinsey, M.G. 1967. Probing behavior of the pea aphid,Acyrthosiphon pisum I. Definitive correlation of electronic recorded waveforms with aphid probing activities.Ann. Entomol. Soc. Am. 60:400–405.Google Scholar
  14. Molyneux, R.J., andJames, L.F. 1982. Loco intoxication: Indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus).Science 216:190–191.Google Scholar
  15. Molyneux, R.J., andJohnson, A.E. 1984. Extraordinary levels of production of pyrrolizidine alkaloids inSenecio riddellii.J. Nat. Prod. 47:1030–1032.Google Scholar
  16. Molyneux, R.J., Johnson, A.E., Roitman, J.N., andBenson, M.E. 1979. Chemistry of toxic range plants. Determination of pyrrolizidine alkaloid content and composition inSenecio species by NMR Spectroscopy.J. Agric. Food Chem. 27:494–499.Google Scholar
  17. Molyneux, R.J., Roitman, J.N., Benson, M., andLundin, R.E. 1981. [13C]NMR spectroscopy of pyrrolizidine alkaloids.Phytochemistry 21:439–443.Google Scholar
  18. Murao, S., andMiyata, S. 1980. Isolation and characterization of a new trehalase inhibitor, S-GI.Agric. Biol. Chem. 44:219–221.Google Scholar
  19. Niwa, T., Inouye, S., Tsuruoka, T., Koaze, Y., andNiida, T. 1970. Nojirimycin as a potent inhibitor of glucosidase.Agric. Biol. Chem. 34:966–968.Google Scholar
  20. Pollard, D.G. 1973. Plant penetration by feeding aphids (Hemiptera, Aphidoidea): A review.Bull. Entomol. Res. 62:631–714.Google Scholar
  21. Reese, E.T., Parrish, F.W., andEttlinger, M. 1971. Nojirimycin and D-glucono-1,5-lactone as inhibitors of carbohydrases.Carbohydr. Res. 18:381–388.Google Scholar
  22. Rose, A.F., Jones, K.C., Haddon, W.F., andDreyer, D.L. 1981. Grindelane diterpenoid acids fromGrindelia humilis: Feeding deterrency of diterpene acids towards aphids.Phytochemistry 20:2249–2253.Google Scholar
  23. Saul, R., Chambers, J.P., Molyneux, R.J., andElbein, A.D. 1983. Castanospermine, a tetrahydroxylated alkaloid that inhibits β-glucocerebrosidase.Arch. Biochem. Biophys. 221:593–597.Google Scholar
  24. Smith, B.D. 1966. Effect of the plant alkaloid sparteine on the distribution of the aphidAcrythosiphon spartii (Koch.).Nature 212:213–214.Google Scholar
  25. Tulsiani, D.R.P., Harris, T.M., Touster, D. 1982. Swainsonine inhibits the biosynthesis of complex glycoproteins by inhibition of Golgi mannosidase II.J. Biol. Chem. 257:7936–7939.Google Scholar
  26. Wegorek, W., andKrzymanska, J. 1970. Investigation on the biochemical causes of some lupine varieties resistant to pea aphid (Acynhosiphon pisum Harris).Biol. Abstr. 51:63590.Google Scholar
  27. Wink, M., andWitte, L. 1984. Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves, and fruits ofLupinus albus L.Planta 161:519–524.Google Scholar
  28. Wink, M., Hartman, T., Witte, L., andRheinheimer, J. 1982. Interrelationship between quinolizidine alkaloid-producing legumes and infesting insects: Exploitation of the alkaloid containing phloem sap ofCytisus scoparius by the broom aphidAphis cytisorum.Z. Naturforsch. 37c:1081–1086.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • David L. Dreyer
    • 1
  • Kenneth C. Jones
    • 1
  • Russell J. Molyneux
    • 1
  1. 1.Western Regional Research Center, Agricultural Research ServiceU.S. Department of AgricultureAlbany

Personalised recommendations