Journal of Statistical Physics

, Volume 41, Issue 1–2, pp 315–321 | Cite as

Bounds on correlation decay for long-range vector spin glasses

  • Aernout C. D. van Enter


We give upper bounds on the decay of correlation functions for long-rangeSO(N)-symmetric spin-glass models in one and two dimensions using McBryan-Spencer techniques. In doing so we extend recent results of Picco.

Key words

Vector spin glass long range McBryan-Spencer bounds stochastic correlation decay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Khanin and Ya. G. Sinai,J. Stat. Phys. 20:573–584 (1979).Google Scholar
  2. 2.
    S. Goulart Rosa,J. Phys. A (Math. Gen.) 15:L51–54 (1982).Google Scholar
  3. 3.
    A. C. D. van Enter and J. L. van Hemmen,J. Stat. Phys. 32:141–152 (1983).Google Scholar
  4. 4.
    K. M. Khanin,Theor. Math. Phys. 43:445–449 (1980).Google Scholar
  5. 5.
    M. Cassandro, E. Olivieri, and B. Tirozzi,Commun. Math. Phys. 87:229–252 (1982).Google Scholar
  6. 6.
    P. Picco,J. Stat. Phys. 32:627–648 (1983).Google Scholar
  7. 7.
    P. Picco,J. Stat. Phys. 36:489–516 (1984).Google Scholar
  8. 8.
    A. C. D. van Enter and J. L. van Hemmen,J. Stat. Phys. 39:1–13 (1985).Google Scholar
  9. 9.
    A. C. D. van Enter and J. Fröhlich,Commun. Math. Phys. 98:425–433 (1985).Google Scholar
  10. 10.
    L. Slegers, A. Vansevenant, and A. Verbeure,Phys. Lett. A 208:267–268 (1985).Google Scholar
  11. 11.
    F. J. Dyson,Commun. Math. Phys. 12:91–107 (1969).Google Scholar
  12. 12.
    J. Fröhlich and T. Spencer,Commun. Math. Phys. 84:87–102 (1982).Google Scholar
  13. 13.
    H. Kunz and C. E. Pfister,Commun. Math. Phys. 46:245–252 (1976).Google Scholar
  14. 14.
    A. Messager, S. Miracle-Sole, and J. Ruiz,Ann. Inst. Henri Poincaré 40:85–96 (1984).Google Scholar
  15. 15.
    O. McBryan and T. Spencer,Commun. Math. Phys. 53:299–302 (1977).Google Scholar
  16. 16.
    J. Glimm and A. Jaffe,Quantum Physics (Springer, New York, 1981), Section 16.3.Google Scholar
  17. 17.
    R. B. Israel,Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, New Jersey, 1979), Chap. 2.Google Scholar
  18. 18.
    M. Cassandro and E. Olivieri,Commun Math. Phys. 80:255–270 (1981).Google Scholar
  19. 19.
    R. L. Dobrushin,Commun. Math. Phys. 32:269–289 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Aernout C. D. van Enter
    • 1
  1. 1.Sonderforschungsbereich 123Universität HeidelbergHeidelberg 1Federal Republic of Germany

Personalised recommendations