Advertisement

Journal of Statistical Physics

, Volume 45, Issue 5–6, pp 933–951 | Cite as

Critical behavior of the two-dimensional first passage time

  • J. T. Chayes
  • L. Chayes
  • R. Durrett
Articles

Abstract

We study the two-dimensional first passage problem in which bonds have zero and unit passage times with probabilityp and 1−p, respectively. We prove that as the zero-time bonds approach the percolation thresholdpc, the first passage time exhibits the same critical behavior as the correlation function of the underlying percolation problem. In particular, if the correlation length obeysξ(p)¦p−pc¦−v, then the first passage time constant satisfiesμ(p)∼¦p−pc¦v. At pc, where it has been asserted that the first passage time from 0 tox scales as ¦x¦ to a power ψ with 0<ψ<1, we show that the passage times grow like log ¦x¦, i.e., the fluid spreads exponentially rapidly.

Key words

First passage time critical behavior two dimensions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Hammersley and D. J. A. Welsh, inBernoulli, Bayes, Laplace Anniversary Volume, J. Neyman and L. M. LeCam, eds. (Springer-Verlag, 1965), p. 61.Google Scholar
  2. 2.
    R. T. Smythe and J. C. Wierman,First Passage Percolation on the Square Lattice (Lecture Notes in Mathematics, Vol. 671, Springer-Verlag, 1978).Google Scholar
  3. 3.
    H. Kesten, Aspects of first passage percolation, Cornell preprint (1985).Google Scholar
  4. 4.
    A. L. Ritzenberg and R. C. Cohen,Phys. Rev. B 30:4038 (1984).Google Scholar
  5. 5.
    A. R. Kerstein,Phys. Rev. B 31:321 (1985).Google Scholar
  6. 6.
    A. R. Kerstein,Phys. Rev. B 30:2980 (1984).Google Scholar
  7. 7.
    R. Chandler, J. Koplick, K. Lerman, and J. F. Willemsen,J. Fluid Mech. 119:249 (1982).Google Scholar
  8. 8.
    D. Wilkinson and J. F. Willemsen,J. Phys. A: Math. Gen. 16:3365 (1983).Google Scholar
  9. 9.
    J. T. Chayes, L. Chayes, and C. M. Newman,Commun. Math. Phys. 101:383 (1985).Google Scholar
  10. 10.
    J. F. C. Kingman,J. R. Stat. Soc. B 30:499 (1968).Google Scholar
  11. 11.
    J. T. Cox and R. Durrett, in preparation.Google Scholar
  12. 12.
    H. Kesten,Adv. Appl. Prob. 12:848 (1980).Google Scholar
  13. 13.
    H. Kesten, Surfaces with minimal random weights and maximal flows: A higher dimensional version of first passage percolation, Cornell preprint (1985).Google Scholar
  14. 14.
    H. Kesten, First-passage percolation and a higher dimensional generalization, Cornell preprint (1985).Google Scholar
  15. 15.
    J. T. Cox and R. Durrett,Ann. Prob. 9:583 (1981).Google Scholar
  16. 16.
    J. C. Wierman,Adv. Appl. Prob. 9:283 (1977).Google Scholar
  17. 17.
    J. T. Chayes and L. Chayes, Percolation and random media, Harvard preprint (1985); to appear inCritical Phenomena, Random Systems and Gauge Theories, Les Houches Session XLII1 1984, K. Osterwalder and R. Stora, eds. (Elsevier).Google Scholar
  18. 18.
    S. R. Broadbent and J. M. Hammersley,Proc. Camb. Phil. Soc. 53:629 (1957).Google Scholar
  19. 19.
    J. M. Hammersley,Ann. Math. Stat. 28:790 (1957).Google Scholar
  20. 20.
    H. Kesten,Commun. Math. Phys. 74:41 (1980).Google Scholar
  21. 21.
    M. Aizenman and D. Barsky, in preparation.Google Scholar
  22. 22.
    G. R. Grimmett,J. Phys. A: Math. Gen. 16:599 (1983).Google Scholar
  23. 23.
    J. T. Chayes, L. Chayes, and J. Fröhlich,Commun. Math. Phys. 100:399 (1985).Google Scholar
  24. 24.
    B. Nyugen, Thesis, UCLA (1985).Google Scholar
  25. 25.
    H. Kesten, Scaling relations for 2D percolation, IMA preprint (1986).Google Scholar
  26. 26.
    L. Russo,Z. Wahrsch. verw. Geb. 43:39 (1978).Google Scholar
  27. 27.
    P. D. Seymour and D. J. A. Welsh,Ann. Discrete Math. 3:227 (1978).Google Scholar
  28. 28.
    H. Kesten,Percolation Theory for Mathematicians (Birkhauser, 1982).Google Scholar
  29. 29.
    T. E. Harris,Proc. Camb. Phil. Soc. 56:13 (1960).Google Scholar
  30. 30.
    R. Lenormand and S. Bories,C. R. Acad. Sci. Paris B 291:297 (1980).Google Scholar
  31. 31.
    J. van den Berg and H. Kesten, Inequalities with applications to percolation and reliability, preprint (1984); to appear inAdv. Appl. Prob. Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • J. T. Chayes
    • 1
  • L. Chayes
    • 1
  • R. Durrett
    • 2
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthaca
  2. 2.Department of MathematicsCornell UniversityIthaca

Personalised recommendations